Netica-J Manual

Version 4.18 and Higher

Java Version of Netica API

Norsys Software Corp

2 NETICA API JAVA VERSION 4.18

NeticaJ Reference Manual
Version 4.18
October 21, 2010

Copyright 19962010by Norsys Software Corp.

This document may be copied and stored freely, provided it is duplicated in its entirety, without
modification, and including the copyright notice.

Published by:

Norsys Software Corp.
3512West 23rd Avenue
Vancouver, BC,
CANADA

V6S 1K5
WWW.Norsys.com

Netica and Norsys are registered trademarks of Norsys Software Corp.

Microsoft, Windows MS-DOS, Visual C++ and Visual Basare registered trademarks of Microsofig.|
Sun SolarisandJava areegistered trademaslof Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Unicode is a trademark of Unicode, Inc.

PDFis aregistered trademark of Adobe Systems, Inc.

X Window System is a tramark of X Consortium, Inc.

IBM andAIX are registered trademarks, and PowerPC is a trademark of International Business NCaoipioiegion
Borland is a registered trademark of Borland International, Inc.

Intel and Pentium are registered trademarks tef l@orporation.

Hugin is a trademark of Hugin Expert A/S

Other brands and product names are trademarks of their respective holders.

While great precaution has been taken in the preparation of this manual, we assume no responsibility for
errors or omissins. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

JAVA VERSION 4.18 NETICA API 3

Contents

LU o] 1= 1Yo I Y 2.
1 Introduction 6
L1 NELICAIAVA APttt ettt neeeneees 6.
1.2 License Agreement and Password.............cccvvvviieeeiieieeeeee e 9.
1.3 FleS INCIUAEA.ccoeeeiiieieeeeeeeeeeee e 10
1.4 Getting Started...........uueeeiiieeeieeiieee e 11
1.4 Complete J@adoCs REfEreNCE.........ccoeeeiiiiiiiiieeeeee e 12
ST [T 1] =] F= U1 o] o 12
1.6 Upgrades, Support and Mailing LiSL............ccooiiiiiiimmmiiiiiiieceee e 13
1.7 Other RESOUICES......ccii ittt ettt e e 14
2 Netica-J Package Design and Usage 15
21The NAExO0 cl| as s and NodeblistExx..,......No.d.e.E.X5
2.2 Inheritance of the Node and Net ClasSeS.......ccccccovvvvvvieeeriiiivieeenenn. 16
2.3 MUItIthreading..........oovviiiiiieieeeee e e 16
2.4 Event Handling.........cooooooiiiiiii it rree e 17
2.5 Java Objects and Native Object PeErs.......cccceeeiiiiiiiiiccceeiieveeeeeeee, 17
2.6 Exception HandliNg.........coooiieeiiiiii i ceeeeeeeeeeeeeeeeeereeee e 18
2.7 Finalizers & Memory Management...............oeeeeeeesemeeeevveenvennveennnens 19
3 Probabilistic Inference 20
3.1 Bayes nets and Probabilistic Inference.........ccceeveeiviiiicceeeeeieeeeeeneenn, 20
3.2 Netica's Probabilistic Inference............ooccvviiiiiiieecce e 21
3.3 Example of Probabilistinfference...............cccccciiiiiieeeiiiiiieieceee e, 22
4 Building and Saving Nets 27
5 Findings and Cases 34
5.1 Cases and Case FilES. ...ttt eeee e 36
5.2 CaASESELS. ..uuiiii it ereei et eeineneseesninn e e e eesennn e A0
5.3 Connecting with a Database................ccccoe e eceevvviiiiceeen . 40
5.4 Case Files with Uncertain FiNdings...........cccvvviviiiiieeneeeeeiiieee 42
6 Learning From Case Data 46
6.1 AIGOITENIMS. ..cciii it 47
6.2 EXPEIIEINCE. ... ittt e e e e e e e e 49
6.3 Counting LEAINING........ccuuuiiiiiiiiee i rmmee e 50
6.4 How To Do Counting_@arning..............eeeeeeeeeeiiiiimmnssniiiiinreeeeeeeesannee 51
6.5 Example of CountingdLearning...........cccuvvvieiiiiiiiiicce e 52
6.6 EM and Gradient Descent Learning.........cccoeevuvveuuvimmmiivnnneeeeenennnnnns 54
A - To |1 o R PP PP PR PPPP RPN 55
6.8 Performance Testing a Net using Ré&brid Data...................ccevvvveees 56
7 Modifying Nets 60

7.1 CommON MO ICATIONSeeeee e eee ettt e e e e eaeere e enaeed 60

NETICA API JAVA VERSION 4.18

7.1 NOE LiDraries........cooiiiiiiiiiiiiiiieeeeee i 61
T2 NEt REAGLION.eeiiiiiiiiiiiiiie et 64
7.3 Probabilistic Inference by Node AbSOrption...........cccvevvveeeviccceeennnns 65
8 Decision Nets 67
8.1 Programming EXampPLe.........ccoeooiiiiiiiiiimmeiieieee e 68
9 Drawing Nodes and Nets 72
9.1 Netica Net Visual Properties and the gui RaEK.............cccvvvvviiiiiiane. 74
LS 07 N\ o o [N w0 1= 1 o] o Y ¢ |
9.3 NOE SEYIE....c e 74
9.4 DrawiNgNOUESuuiiiiiiiiieei e eer et e e e e e e 75
9.5 EVENt HaNAIiNG.uuviiiiiiiieeeeieeee e r e e e 75
9.6 NEIVIBWET......iiieiiiei ettt teeee s e e e e s e e e e e e e e e s e e e s e s s e eeeeseeeseeeseeeenenenenns 75
9.7 Miscellaneous Useful Features...........ccooovuiiiiieesiiiiiieeeee e 76
9.8 FeedbaCk Wanted.........ccoooiiieiiieii vt rees e 76
10 Special Topics 77
10.1 Node Lists and NOGBELS...........cccevvvvviiiiiiiieeeiiccceeeeeeen e eeseesssmmmennnd
10.2 Graph AlQOrthmS.........uuuiiciicece e 79
10.3 Userdefined Data...........c.uuvveiiiiieiiieee e rmmee e 80
10.4 SENSIIVILY....cciiiiiiiiiicc et 81
10.5 Stochastic SIMUIAtION............eviiiiiiiiee e 83
11 Equations 84
11.1 Simple EXamPIES........ccooooiiiiiiii e 84
11.2 EQUALION SYNTAX.......iiiiiiiiiiiiiiieeeeeeeie et e e e e eeeeeaeeneennaeennees 85
11.3 Equation ConditioNalS............uuvuriiiiiiiiiimmmeeeeeeeeeeeeeeeeeeeeeee e eeeeneannns 87
11.4 Converting an Equationtoa Tahble...................co e, 88
11.5 Equations and Table Size..............cc.oiiieccii e, 88
11.6 LiNK NAMES...coiiiiiiiiiiiiiieie et e e 89
11.7 Referring to States of Discrete NOAES...........evvvvvviiiiiiimnneeeeeeeeeeenn. 89
11.8 Constant Nodes as Adjustable Par@rel............cccccvvvvvvvvimmnneeennnn. 90
11.9 Tips on UsiNg EQUALIONSoeuiiiiiiiiiiiiiimemee e e e ee e e e e 90
11.10Specialized EXamPIES..........c.uuviiiiiiiiiiieceee e 91
11.11Equation Constants, Operators, and FUNCLONS..........cccccoevviieen.. 92
11.12Special Math and Distribution Functions Reference.................... a5
12 Bibliography 104
13 Functions by Category 105
)Y =] 1 PP PPPPPPPPRTRTRTN 105
Error Handling........ccvveieiiieeeeee oot 105
File OPeratioNS........c.cuuiiiiiieeee i siceee s e e e e e e 105
FINAINGS (EVIAENCE).......uiiiiiiiiiiie e 106
(©70] 1210111 T T 106
Belief Updating and INferencCe..........ccooeeeiieiiiiiicccri e eee 106
Learning From Datal..............uuueviiiiiiiimee e eeesre s 107

JAVA VERSION 4.18 NETICA API

[N o0 L=] (PP RR PSPPI 107
Cases (Sets of FINAINGS)......covvviiiiiiiiiiiieeee e 107
Sensitivity to Findings (UtiliFree Value of Information)..................... 108
Performance TestiNg @ NEeL..........oviiiiiiiiiiirr e 108
Database CONNECHIVILY.........uueiiiiieiiiiirrmi e e 108
High-Level Net ModifiCation..............cccuviiiiiiiieeneeeee e 108
Low-Level Net Modification.............oovvieiiiieeiiieeeesece e 109
Retrieving Net INformation..............oooiiiiiiiieeeieceeee e 109
EQUALTIONS ...t 110
1= o] 1= 110
[N o [=1 £ PSPPSR 110
ViISUAI DISPIAY. ..o ittt rmeee e 111
User Data Fields..........oooooioiiiii e 111

14 Index 112

6 NETICA API JAVA VERSION 4.18

1 Introduction

This reference manual is for Netida, the Java version of the Netica
meant to be used in conjunction with the onscreen Nétjagadocs reference (see below). Nefida a

set of Java classes and an accompanying Java Native Interface (JNI) librallpwhatJava developer to

use the Netica AP forwerkinggith8ayesann@taorks i br ar y

This manual is not a manual for Netica Application, which is an easy to useapdiciick application
program with much of the same fuionality (seehttp://www.norsys.com/netica.htjnl Users of the API
will typically want to have thépplicationhandy for visually inspecting and modifying nefsversion
of Netica soon to be released vallow Netica API to use the GUI dfetica Application.

Besides Java, other versions of Netica API exist fi@+@, C# and Visual Basic each offering the full

Netica functionality. Visitttp://www.norsys.com/netica_api.htta learn more about the other members

of the Netica API family, and to obtain their documentation. The C version can be used by programs
written in any language which can cé@ll functions, such as C++, Python, Perl, Prolog, Lidptlab,

Delphi Pascal, Fortran or Cobol). Interface files for some of these languages, developed by the Netica
community, are available from Norsys. Matlab is supported through this, the Java API.

This manual assumes that you are familiar with the Java programming language. It also assumes
familiarity with Bayesian networks or influence diagrams, although it has a little introductory material,
especially on issues that are new or generally not well understood. Questions and comments about
material in this manual may be sent tweticaj@norsys.com

1.1 Netica-Java API

The Netical API is a complete library of Java classes for working with Bayesian networks (also known
asBayes nets, belief networks, graphical models or probabilistic causal models) and influence diagrams
(also known as decision networkslt contains functions to build, learn from data, modify, transform,
performancd est, save and read net s, as wel |l as a powel

http://www.norsys.com/netica.html
http://www.norsys.com/netica_api.html
mailto:netica-j@norsys.com

JAVA VERSION 4.18 NETICA API 7

sets of cases, and can connectdliyenvith most database software. Bayes nets can be used for diagnosis,
prediction, classification, sensor fusion, risk analysis, decision analysis, combining uncertain information
and numerous probabilistic inference tasks.

Programs that use Netidacompletely control it. For example, Netica functions will not take any action
until called, Netica will not do gnl/O unless requested to, and its functions will not take an unpredictable
amount of time or memory before returning. Netics threadsafe in multhreaded environments. It
may be used in conjunction with other Java or JNI C libraries and it wterteire with them.

Versions of Netical are available for MS Windows, Linux, and Macintoghdfor many otheplatforms

from cell phones to mainframesontact us foinfo), and each of these has an identical interface, so you
can move your code between these platforms without changing anything to do with the Netica API. For
the latest versions for the more common platforms, kifgit//www.norsys.com/download_api.html

Before releasing any new version of the Netica ARErg function is put through rigorous quality
assurance testing to make sure it operates as designed. Hundreds of real nets and millions of random nets
are generated and solved in multiple ways to check the inference results. This level of QA, combined
with a careful initial design anolverten years of extensive customer usage, has resulted in-aaltk

product.

The Netica API has been designed to be easily extended in the future without changiradyeeiokyt
exists. Many new features are currently under development, and it will continue to be extended for years
to come.

Netica APl features

ADynamic Construction : Can build and modify networks "on the fly" in memory (to suppantking
with dynamic Bayes nets), and can save/read them to file.

AEquations: Probability tables may be conveniently expressed by equations, using a Java/C type syntax
and taking advantage of an extensive libraruft-in functions, including all the standard math
functions and common probability distributions, as well as some functions and distributions
specially suited to Bayes nets, such as Roisyioisymax, noisysum, etc.

ALearning from Data: Probabilisic relations can be learned from case data, even while the net is being
used for probabilistic inference. Learning from data can be combined with manual construction of
tables and representation by equations. It can handle missing data and latent varfatitkn
nodes. Learning algorithms include: counting, sequential updating, fractional updating, EM
(expectation maximization), and gradient descent.

ADatabase Connectivity: ~ Allows direct connection to most database software.
AThreadsafe: Can be usedafely in multithreaded environments.

AEncryption: Can save and read nets to file in encrypted form, which allows deploying solutions relying
on Bayes nets kept private to an organization.

http://www.norsys.com/download_api.html

8 NETICA API JAVA VERSION 4.18

Asensitivity: Netica can efficiently measure the degree tictvifindings at any node can influence the
beliefs at another node, given the findings currently entered. The measures can be in the form of
mutual information (entropy reduction), or the expected reduction of real variance.

Aadvanced Decision Nets: ~ Cansolve influence diagrams which have multiple utility and decision
nodes to find optimal decisions and conditional plans, using a junction tree algorithm for speed.
Handles multistage decision problems, where later decisions depend on the outcomeigrof earl
ones, and on observations not initially known.-fNi@etting links need not be explicitly specified.

Adunction Tree Algorithm: ~ Can compile Bayes nets and influence diagrams into a junction tree of
cliques for fast probabilistic inference. An elimiio& order can be specified or Netica can
determine one automatically, and Netica can report on the resulting junction tree.

Asoft Evidence: Accepts | i kelihood findings (i.e., Avirtua
variable is not is someatk, Gaussian findings, and interval findings, as well as regular real
valued or state findings.

ALink Reversal: Can reverse specified links or "sum out" (absorb) nodes of a Bayes net or influence
diagram while maintaining the same overall joint prolighdlistribution, properly accounting for
any findings in the removed nodes or other nodes.

AbDisconnected Links: Links may be individually named and disconnected from parent or child nodes,
thus making possiblibraries of networkfagmentgwhich you may then copy and connect to
other networks or node configurations

Acase Support: Can save individual cases (i.e. sets of findings) to file, and manipulate files of cases.
Works withthe UVF file formaf which allowscasedo be ircomplete ohave uncertain values
(Gaussian, interval, sets of possibilities, sets of impossibilities, amtdassociate anlD number
and multiplicitywith each case

Asimulation: Can do sampling (i.estochasticsimulation) to generate randarases with a probability
distribution matching the Bayes net. Can use a junction tree algorithm for spdedirerct
sampling for nets too large to generate CPTs or a junction tree.

Auser Data: Every node and network can store by name arbitraryfigéda defined by you. They may
contain numbers, strings, byte data, etc., and are saved to file when the object in question is being
saved. As well, there are fields not saved to file, which can contain a pointer to anything you
wish.

AError Handling: Has a simple but powerful method for handling usage errors, which can generate very
detailed error messages if desired.

AArgument Checking: Allows programmers to control how carefully API functions check their
arguments when they are called, includirfglavelopment modeto extensively check everything
passed to an API function.

Acompatibility: Can work handn-hand with the Netica Application standalone product (for example,
sharing the same files), and with Netica API versions for other languages.

AEfficient: Is optimized for speed, and is not too large (2 MB typical).

Amany Platforms: s available for a wide range of platforms including MS Windows (95/NT to Vista),
Linux, Macintosh AlX, etc. Contact Norsys for other platforms.

JAVA VERSION 4.18 NETICA API 9

AMemory Limiting : You can set a bound on how much total heap space Nefi€4d is allowed to
allocate for large tables, thereby preventing virtual memory thrashing or the mstaiing of
other parts of your application.

AJava Oriented Features :
1 Clean objecrientd design
Comprehensive javadoesd manual
Sample java source applications to get you started
Uses Java's exception handling mechanism in the natural way
Supports event listening by any Java object for events such as the creation,
deletion, duplication,te. of Nets or Nodes
Supports user data fields for any Serializable Java object
1 Supports standard Java I/O streams
1 Supplies graphical visualization of Bayes nets with AWT/SWING classes

= =4 =4 =

AMore Features: A more extensive list of features is available from:
http://www.norsys.com/netica_api.html

1.2 License Agreement and Password

Before using Netica API, make sure you accept the license agreement that is included in this package as
thefile LicenseAgreement.pdf

If you have purchased a license to use Netica API, you will have received a license password by email, on
the invoice, and/or on the shipped disk. You pass the license pagswbatnviron constructor. For
example:

Environ env = new Environ("your unique license");

If you do not have a license password, then you can simply supply in place of it, in which case
Neticad API will be fully functional, but limited in problem size (e.g. size of nets, size of data sets).

The license password you have purchased also licenses you to use versions of Netica API for other
languages, such as the C versionti®¢eC), the C# or Visual Basic version, or the C++ version. Simply
supply that license string to the appropriate Environment constructor in those languages. The same rights
and obligations granted by the API license apply to all the language versions.

I f your |l icense password enablwed hiNat iida APIlhe idti ¢
following that is the version number of the license. It must be at least 3 to fully enable this version (3.xx)

of Netica API. If it is less, then after you calbw Environ() , a warning message will be available for

viewing if you callNeticaError.getWarnings(), and Netica API will continue operation in limited

mode. To upgrade your license, contact Norsys, or lstes://www.norsys.com/order_v3_upgrade.htm

http://www.norsys.com/netica_api.html
https://www.norsys.com/order_v3_upgrade.htm

10

NETICA API JAVA VERSION 4.18

1.3

Files Included

The following files are included in the distribution of Netitahe Javaersion of Netica API:

Directory

File

docs

bin

src/neticaEx/

src/neticaEx/
aliases

demo

examples

examples
Data Files

9 NeticaJ_Man.pdf
i javadocs/
I LicenseAgreanentpdf

9 Neticad.jar

9 NeticaJ.dll
(libNeticaJ.so)
(libNeticaJ.jnilib)

1 Netica.dll
(libnetica.a)

9 NetEx.java
9 NodeEx.java
9 NodeListEx.java

1 Net.java
9 Node.java
9 NodelList.java

9 Demo.java
9 compile.bat (.sh)

9 run.bat (.sh)

9 BuildNet.java

9 Dolnference.java

9 SimulateCases.java
I LearnCPTs.java

i LearnLatent.java

1 ClassifyData.java
9 MakeDecision.java
9 DrawNet.java

9 NetViewer.java

i TestNet.java

9 compile.bat (.sh)

T run.bat (.sh)

9 ChestClinic.dne

9 BreastCancer.dne

9 ChestClinic.cas
fiChestClinic_WithVisualsine
f LearnLatent.cas

i BreastCancer.cas

Description
1 the file for this deument
1 the javadocs directory for Netich
1 a legal document relating to the use of Netica API

9 the Java class library that defines Netica
1 the Javato-Native interface library (Windows only)

f f f

A fi A
1 the native Netica API library (Windows only)

A fi A

9 A class containing useful Net methods

T fi i Node
T f i st i i NodelL
9 A convenience class that renames NodeEx as Node

1 fi fi

q f NodeListEx agiNodeList

9 a sample application to test your Netitastallation
9 a sample batch file for compiling Demo.java

(.bat for Windows, .sh for Unix/Linux/MacOSX)
9 a sample batchlé for running Demo.class

(.bat for Windows, .sh for Unix/Linux/MacOSX)
T demonstrates building a Bayes net from scratch
I denonstrates doing inference
fdemonstrates creating case instances that statistically derive from a givt
T demonstrates learning from cases
9 demonstrates EM Learning
9 demonstrates Naive Bayesian Classification of-veald medical data
1 demonstratebuilding a decision net and choose an optimal decision with
9 demonstrates use of the gui package for drawing nets
9 demonstrates use of the gui package for editing nets and their findings
9 demonstrates testing the performance of a learned net wittethester tool
1 a sample batch file for compiling all the java files in this directory
9 a sample batch file for running all the java programs in this directory, aft
they have been compiled
9 an example net file required by SimulateCases/LearnCP3th&Ejava
9 an example net file required by ClassifyData.java
i a case file created by SimulateCases.java and required by TestNet.java
1 ChestClinic.dne but including all the size/position/color display informati
i a case file required by LearnLatentga
9 a case file required by ClassifyData.java

JAVA VERSION 4.18 NETICA API 11

The NeticaJ directory structure

Thedocd directory contains manuals, javadocs, license agreements, and any other documentation.

Thebin/ directory contains the Netiehruntime software without which Netidawill not function.

Thesrc/ directory contains source software that is distributed with Ngticgou are free to examine, compile, or

copy from these source filedVe suggest that you leave the original files unmodified. These functions may change

in future version of Netica.

Thedemol/directory contains a simple program that should be compiled and run after installation to establish that
your NeticaJ system is correctly installed and ready to use.

Theexamples/directory contains assorted sample data and source code that you may examine, copy, and edit freely.

1.4 Getting Started

Recommendakd Installation steps:

1. AJava2 platform is required. There are many suppliers, for example SUN Microsystems at
http://java.sun.com/products¥Version4.18was constructed using Java.2 and should be
compatible with any 1.4 and higher platform.

2. Download Netical from the Norsys websitehttp://www.norsys.com/netieghtml (older
versions can be found hattp://www.norsys.com/downloads/old versinn€hoose a version
that matches your OS/platform

3. Unzip it, and it will form a diretory called Netical 325 (or the current version number).
4. Test your installation with the Demo application provided:

a) Change to thdemo/directory and at the command line, typmmpile.bat
(compile.sh on Unix/Linux/MacOSX). Or click on the compile.bat icon. This will
compile Demo.java and create Demo.class.

b) Atthe command line, typetun.bat (run.sh). Or click on the run.bat icon. This
will run Demo.class.

c) Ifit displays a welcome message, and does simple probablitigrence without
declaring any errors, then your installation was successful.

5. Now that you have the example program running, you can duplicatdethe/ directory,
replace Demo.java with your own source files, and you are ready to build your own
applicaton. Don't forget to replacentill " in "new Environ(null) " with your own
license password, if you want to have the full functionality of Netica.

http://java.sun.com/products/
http://www.norsys.com/netica-j.html
http://www.norsys.com/downloads/old_versions

12

NETICA API JAVA VERSION 4.18

1.4

6. Demo.java, is a good starting point for developing your own applications. You may wish to
"cut-andpaste" fromit. Similar examples showing how to build a net from scratch, do
inference, generate cases, and learn from cases are providedxarthges/directory.

7. If you are familiar with the Hugin or JavaBayes systems and would like information on
equivalent Nata functions, contact Norsys.

Complete Javadocs Reference

For javadocsstyle documentation for Netiel simply point your browser at thedex.html file in the
docs/javadocsMirectory. The javadocs very thoroughly document every céass every function of the
Netica API. You will find it an invaluable companion during development.

1.5

IDE Installation

Using Java IDEs (EclipseJBuilder, NetBeans, JDeveloper, Forte, etc.)

You must inform your IDE of the locations of the three library fildgeticaJ.dll (libNeticaJ.s0),
Neticad.jar, andNetica.dll (libnetica.a). Assuming Netica was installed at the following location

on your filesystem:

1)

2)

3)

Windows: C:\ NeticaJ 325
Unix/Linux/MacOSX: /home/Netical 325

NeticaJ.dll(libNeticaJ.so/.jnilib) must appear on the java library path. Typically this is done
with a-D option to the JVM. For example:
Windows: java - Djava.library.path=C: \ NeticaJ_325 \ bin
Unix/Linux/MacOSX: java - Djava.library.path=/home/Neticad_325/bin

NeticaJ.jar must appear on the java CLASSPATH. For example:
Windows: java -classpath C: \ NeticaJ_325 \ bin \ NeticaJ.jar
Unix/Linux/MacOSX: java - classpath /home/Netical_325/bin/ Neticad.jar

Windows Only: Netica.dll must appear on the Windows execution "path, so that Windows can find it.
For example:
Windows: set PATH=C: \ NeticaJ_325 \ bin;%PATH%

Eclipse instructions:

JAVA VERSION 4.18 NETICA API 13

1. Create your Java projeas usual

2. In the "Project Properties" dialog, choose the "Java Build Path" link, then click on the "Libraries
and then click on the "Add External Jars" link. Navigate to thNefical _32%in directory and select
Neticad.jar

3. In the "Run As" dialoggo to the "Arguments" tab and in the "VM Arguments" window create t
following argument:Djava.library.path=CNeticaJ_32%in

4. Windows Only: Still in the "Run As" dialog, go to the "Environment" tab and create a new "PATH"
variable with value: GNetical 32%in;%PATH%

1.6 Upgrades, Support and Mailing List
New versions of Netica API are available for down

menu atwww.norsys.com If you are using a license passwoitdwill work with any version released
within a year of the password being issued (and often longer).

If you would like to be notified of version updates and other news regarding Netfaase visit
https://www.norsys.com/mailing_list.html?interests=Neticand supply us with your-mail address.

Mailings are infrequent, and your privacy will be respected.

We at Norsys have workdthrd to make Neticd a very high quality and robust package that is easy and
natural to use. If you have any ideas for how it can be improved, we would be very happy to hear them.
Please send your suggestions treticaj@norsys.com

http://www.norsys.com/
https://www.norsys.com/mailing_list.html?interests=Netica-J
mailto:netica-j@norsys.com

14 NETICA API JAVA VERSION 4.18

1.7 Other Resources

The following resources at the Norsys website may be helpful when using Netica API:

Netica Application - This program has an eatyuse graphical interface, and most developers
working with Netica API use it to visualize and/or edit the Bayes nets they are working with. It
is also useful for experimentation, and trying out concepts th&b &eimplemented using
Netica API, since it operates in much the same way.

Website location: http://www.norsys.com/netica.html

Resources PageDescribes training, consulting, literature and websites available for Netica.

Website location: http://www.norsys.com/resources.htm

Bayes Net Library - A website containingnany example Netica files that are ready to download into
Netica (Application or API). They are Bayes nets and decision nets that have become classics in
the literature, or are contributed by other Netica users. This is a good place to look for
inspiraton and ideas.

Website location: http://www.norsys.com/net _library.htm

DNET File Format - Describes the file format for NetieaET files (which have file extension .dne
or .dnet).

Website location: http://www.norsys.com/dlI/DNET File Format.txt

http://www.norsys.com/netica.html
http://www.norsys.com/resources.htm
http://www.norsys.com/net_library.htm
http://www.norsys.com/dl/DNET_File_Format.txt

JAVA VERSION 4.18 NETICA API 15

2 Netica-J Package Design and Usage

This section outlines programming principles and issues as they relate to-Netmgeration and
organization. If you are an experienced Java developgure planning a sizeable development effort
with NeticaJd, you will definitely want to read and understand this section before beginning your
development.

21 The AEXO0O c¢cl asses Net Ex, NodeEXx, and

The AExO classes inherit from their par.ent cl ass

They are built on top of the core Netica system to provide convenience df ish e A EXx 0 st and
AEXtrao, AExampl eod, AExternal o, i Ex p e shorrogshat al o0, a
were deemed useful, but not basic enough to bel on
because they are more useful in source code form, so that you can customize them to your needs.

Because their Java sour c eagood placenta Ibok tbecdding éxamplesii E x 0
Il ndeed, many of the coding examples found in the

Unlike the core Neticasystenthe A EX O ¢l asses may change in futur e
removed or modifiedFor this reason, you may want to keep copies of the Ex classes for future reference,
or you may want to copy out any methods you need to form your own extensions of the parent classes.

Since the AExO0O classes cont ai nwasnot ntaon yu sues etf hud fimkext
place of the more basic parent classes. See Section 3, Inheritance, below, for considerations when doing
this.

The fAExO0 itgdardasapposted byatméleticad usercommunity, so please feel welcome to submit
additional methods that you have found useful, or to suggest improvements to the ones already there.

16 NETICA API JAVA VERSION 4.18

Some of the AEx0 class methods are static, whi |l e
method static was whether that method could be thaudht as a -fisit hindpdonkat woul
to have around even when you didndédt have an AExO
new state data, it is a trivial exercise to convert a static method to kstatimnor vice versahsuld you

prefer the alternate.

Because the NAEx0 c¢cl asses are so useful, many deve
easy, their compiled classes have been included in the NeticalJ.jar distribution. All you need do is
import norsys.netic aEx.*; and you are ready to use them without the need to compile your

own versions of them.

Finally, as a convenience, we also supply innbesys.neticaEx.aliasegpackage, three wrapper classes

for NetEx, NodeEx, and NodeListEx, that are named Net, Node, and NodelList, respectively. They allow
you to use the base class names and still use the Ex classes. def@efDemo.java and
examples/BuildNet.pvafor examples of how to use these convenience classes.

2.2 Inheritance of the Node and Net classes

Advanced users will want to create their own specialized Node and Net classamke this task easier,
and avoid the need for copy constructors, we have supplied you with a means to informl Métata

class you would like it to use when constructing a Net or Node (for example, when-Neticzading a

net in from a file). Th static methods:

Net.setConstructorClass (String className) and
Node.setConstructorClass (String className)

have been supplied for this purpose. All they require is that your Net or Node extension haudta def
constructor. See their javadocs pages for examples.

Some users will want to use the words fANeto and 0
from norsys.netica.Net and norsys.netica.Node , respectively. The supplied files in
src/neticaEx/aliasesh ave exampl es of this. Al t hough, overlo

is not difficult, namespace conflicts may arise. In general, if you explicitly import your Node or Net
class, the Java compiler will use those as the defaskeda

2.3 Multithreading

If you are running Neticd within a single process and are not creating more than one thread in that
process, you donodt need to consider this issue.
environment, thegou need to consider threading issubleticaJ is threadsafe, in thdtone threadtalls

JAVA VERSION 4.18 NETICA API 17

a NeticaJ function, and while it is executing another threadsealletical function the new calvill not
interfere, even if they are both trying to operan the same objefthe new call will execute after the
original is done) Of course, your software mudb its ownappropriatesynchronizationandconsider
race possibilitiesif you havemore than one thread working on the same object (such as nmedey at
the same timeThreads operating aeparataets will not have any interference.

For efficiencyreasonsyou may want to consider the followirlgany NeticaJ functions willblock other
NeticaJ functions until they return. This is an efficdgrconcern onlyand not a deadlock concern, since
the executing Neticd function will not be waiting on any other thread (unless you do yihatself
through the use of Netiehcallbacks).

24 Event Handling

If you wish your program to receive events, Netichas the ability to call your program wheertain
types ofevents occur.

Any Java object can choose to listen to Netica events by simply implementing the NeticaEventListener
interface and asking the node or net that gener at
The methodsNode.addListener and Net.addLis tener are supplied for this purpose. Since

Node and Net objects are already NeticaEventListeritbes; each possess amventOccurred

(NeticaEvent) method. If you should choose to override this method, it is important that you call

the base class metthosuper.eventOccurred(event) in your method, so that this node or net

will still be able to handle delieig events properly.

Currently events are generated for the creation, relmawad duplication of Nodes and Netg:uture
versions of Netica will include more types of events. If you have a request, please let us know.

25 Java Objects and Native Object Peers

Since Netical i s a JNI API , many of xtitees 0J aovfa tdkejiegctnsatad
counterpart objects internal to the core Netica binary. This is true of Environ, Net, Node, NetTester,
NeticaError, Sensitivity, and Streamer. The remaining Java classes (General, NeticaEvent,
NeticaException, NeticalListen, NodeList, State, User, Util, Value, and VisualNode) do not have peer
equivalents.

The existence of peer relationships is usually transparent to the Java developer] Watadesigned to

give the developer as much psssible the sense he/she is working in a 100% pure Java environment.
That provides the best of both worlds: the productivity, safety and memory management of Java with the
speed and reliability of a highly optimized, highly tested, widely used nativeybina

18 NETICA API JAVA VERSION 4.18

The only situations where you need to know about peer objects is when considering finalization and the
cleanup of native resources (discussed inRimalizerssection, below), or when working in a model
view-controller (MVC) environment where thingeuwd be happening to the native model objects, and

the Java environment is presenting but one view on that model. This can happen, for instance;Jf Netica
is communicating with peer objects inside Netica Application. A user of Netica Applicationdiatd

a native node via the GUI, and the Java environment would then find that its Node object had been
disconnected from its peer. Netidahas a standard Java PublistdSubscribe mechanism (using
NeticaEventListeners) for Java objects to be madeewhsuch occurrences on the native side of the
universe (see thevent Handlingsection, below).

2.6 Exception Handling

Exception handling in Netied works in the normal Java way. If a method encounters an unexpected
situation that it cannot resolve, a NeticaException is thrown. The vast majority of-Bletiethods are

able to throw a NeticaException. The toString() method of NeticaException details the reason for the
Exception. Hence, your typical toatch blockcouldlook something like this:

try {
}

catch (NeticaException e) {
e.printStackTrace();
}

If you are familiar with the Netica C API, you will find that Netidgab s excepti on handl ir
makes coding much more convenient and straightforward, since you rey luged to actively check if
an error has occurred. Netiddooks after that for you, and will throw a NeticaException automatically if

/I call Netica - J methods

any fAseriouso (Aishow stoppero) error occur s. B
ERROR_ERBr XXX_ERRwhich means the requested operation was not completed.

Note that this means th® ARNING_ERRNd lower warnings do not result in a NeticaException being
thrown, so in those cases where such warnings can occur, you canyacdivehe static method
NeticaError.getWarnings after the method call, to determine if a warning has occurred and, if
so, what the warning was about. See the javadodsdticaError.getWarnings for examples of
this.

It is okay to callNeticaError.getWarnings only once in awhile, since warnings will accumulate
until the nextgetWarnings invocation, whereupon they are cleared from the warnings list.

JAVA VERSION 4.18 NETICA API 19

2.7 Finalizers & Memory Management

For large networks and large node tables, Netica can consume large amounts of memory. Often Java
developers ceaset worry about memory management, as the JV
collect Java objects that can no longer be referenetmvever, the Java specification does not require

that a JVM actually call the garbage collector whenever a Java obierencds no long usedIt may or

may not do so, and it may choose to do so on its own schedule. Accordingly, you may want to actively

call thedelete() orfinalize() methods on resourdaingry objects when you are done with those

objects, rather #m wait for the JVM to free them.

For mostNetica objects calling finalize() frees all their native resourcedyut notfor Node and
Stateobjects For them,finalize() just indicates that you are done with the reference, but the native
resources wonot be freed unHowdver, cdllieg Nededeieta)g Net or
will remove the Node from its owning Net an@drits resources, and callingtate.delete() will

remove the State from its owning Node and free its resources.

Note, if youeveroverride thefinalize() method of any Neticd class, be certain that you always

call the base class finalizer methadper .finalize() as your last instruction, so that Netig@&an

do its own housekeeping upon the Java object being collected. For example, if your class extends
norsys.netica.Streamer, and you need to overriddirtaéze() method to perform special clese

down handling of files and such, then your finalize method would look something like this:

/**
* overrides Streamer.finalize().
*/
public void finalize() throws NeticaException {
... your own finalization logic . . .
super.fi nalize();

20 NETICA API JAVA VERSION 4.18

3 Probabilistic Inference

3.1 Bayes nets and Probabilistic Inference

A Bayes net (also known as a Bayesian network, BN, BigNlef network probabilistic causal network

or graphical modelgaptures our believed relations (which may be uncertain, or imprecise) between a set

of variables that are relevant to some problem. They might be rete@aise we will be able to observe

them, because we need to know their value to take some action or report some result, or because they are
intermediate or internal variables that help us express the relationships between the rest of the variables.

Some BRyes nets are designed to be used only once for a single world situation. More often, Bayes nets
are designed for repetitively occurring situations. They may be constructed using expert knowledge
provided by some person, by an automatic learning prodeish examines many previous cases, or by a
combination of the two.If the net is to be used repetitively, then it may be considereckasvadedge

base Sometimes nets that are built to be used onlg @me constructed automatically-the-fly, perhaps

by pasting together pieces of nets from libraries using templaié®n the libraries and templates
together make up a knowledge base. Netica is designedrkofor either type of application. It allows
probabilities to be entered directly, perhaps originally coming from an expert, and it can learn
probabilities from data. It will not handle templates directly, but it has the facilities for libraries and on
thefly construction that such a program requires.

A classic example of the use of Bayes nets is in the medical dorkire each new patient typically
corresponds to a new case, and the problem is to diagnose the patientn@.ebeliefs for the
undetectable disease variables), or predict what is going to happen to the patient, or find an optimal
prescription, given the values of observable variables (symptoms). A doctor may be the expert used to
define the structure of the neind provide initial conditional probabilities, based on his medical training
and experience with previous cases. Then the net probabilities may-enfedeby using statistics from
previous cases, and from new cases as they arrive.

JAVA VERSION 4.18 NETICA API 21

When the Bayes né$ constructed, onaodeis used for each scalar variable, which may be discrete,
continuous, ompropositional(true/false). Because of this, the words "node" and "variable" are used
interchangeably throughout this manual, bedriable” usually refers to the real world or the original
problem, while "node" usually refers to its representation within the Bayes net.

The nodes are then connected up with direlitdd. Usuallya link from node A (thgparen) to node B

(the child) indicates that A causes B, that A partially causes or predisposes B, that B is an imperfect
observation of A, that A and B are functionally related, or that A and B are statistically correlated. The
precise definition of a link is based on conditional independence, and is explained in detail in an
introductory work like RussellNorvig95 or Pearl88. Finally, probabilistic relations are provided for each
node, which express the probability of that nodeiig different values depending on the values of its
parent nodes.

After the Bayes net is constructed, it may be applied. For each variable we know the value of, we enter
that value into its node adfiading (also known as "evidence"J'hen Netica doeprobabilistic inference

to find beliefs for all the other variablesSuppose one of the nodes corresponds to the variable
"temperature”, and it can take on the eslucold, medium and hot. Then an example belief for
temperature could be: [cold 0.1, medium- 0.5, hot- 0.4], indicating the probabilities that the
temperature is cold, medium or hothe final beliefs are sometimes callgdsterior prdabilities (with

prior probabilitiesbeing the probabilities before any findings were enterdpbabilistic inference done

within a Bayes net is calldatlief updating

Probabilistic inference only results in a set of beliefs at each node; it does not change the net (knowledge
base) at all. If the findings that have been entered are a true example that might give some indication of
cases which will be seen in the futuyeu may think that they should change the knowledge base a little

bit as well, so that next time it is used its conditional probabilities more accurately reflect the real world.
To achieve this you would also gwobability revision which is described ithe "Learning From Case

Data" chapter. As well as regular probabilistic inference, Netica can do a number of other types of
inference, such as finding the most probable explanation (MPE), finding mutual information, solving
decision nets, node absorptjatc.

3.2 Netica's Probabilistic Inference

There are three ways that Netica can do regular probabilistic inference: by junction tree compiling, by
node absorptions, and by samplifgor most aplications you will want to use the junction tree method,
because usually it is most convenient and executes much faster. You may want to use node absorptions
when you have some findings that are going to be repeated in many inferences (e.qg. if wau thiato
something is always true in the context of interest), or large parts of a network that are irrelevant to a
guery, so can be pruned away. This section deals with junction trees; see the "Modifying Nets" chapter

22 NETICA API JAVA VERSION 4.18

for information on link reversals dmode absorption. Sampling is an inexact method, and is usually used
only when the Bayes net is too large to compile into a junction tree, or there are continuous variables
whose value you want to provi de Dbagcomplisbhed byicalling and
Net.generateRandomCase() many times (say 1000), with argumentmethod =2
(FORWARD_SAMPLINGaNnd recording what percentage of the cases resulted in the node of interest having

a given value.

Netica uses the fastest known algorithm for exact general probabilistic inference in a compikeddaye
which is message passing ifjuaction tree(or "join tree") of cliques. This is based upon the work of
LauritzenSpiegelhalter88, which is described in muoiptr and more extensive terms in CowellDLS99
and SpiegelhalterDLC93.

In this process the Bayes net is first "compiled” into a junction tree. The junction tree is implemented as a
large set of data structures connected up with the original Bayes nétyisilile to you as a user of
Netica. You enter findings for one or more nodes of the original Bayes net, and then when you want to
know the resultant beliefs for some of the other nodes, belief updating is done by a fpassaug
algorithm operating othe underlying junction treelt determines the resultant beliefs for each of the
nodes of the original Bayes net, which it attaches to the nodes so that you can retrieve them. You may
then enter some more findings (to be addethé first), or remove some findings, and when you request

the resultant beliefs, belief updating will be performed again to take the new findings into account.

The amount of memory required by the junction tree, and the speed of belief updating axenapgiso

proportional to each other, and are determined by the quality of the compildttan.quality of the

compilation depends upon tletimination orderused, which is a list of all the nodes in the nény

order of the nodes will produce a successful compilation, but some do a much better job than others. You
may specify an elimination order (perhaps from vy
fopti mi ze csolenNdtida &Rl find a goad orje itself.

3.3 Example of Probabilistic Inference

Now let's look at an example of using the Netica API to do probabilistic inference. In this example we
will read in a simple Bayes net from a file, compile it into a forntaklé for fast inference, enter some
findings, and see how the beliefs of a particular node change with each finding. The example program,
Dolnference.java can be found in thexamples/directory of the Neticd installation.

The net we will use, called ChestClinic, is shown below. Although reasonable, it is a toy medical
diagnosis example from LauritzenSpiegelhalter88 that has often been used in the gestofstration
purposes. To a certain degree, the links of the net correspond to causation. The two top nodes are
"predispositions" which influence the likelihood of the diseases in the row below them. At the bottom are

JAVA VERSION 4.18 NETICA API 23

symptoms fo the disease. Each possible state of the node is shown in the box. Ignore the bars for now;
they were produced by the Netica Application program, and just show the probabilities of each state

before any findings have arrived.

Visit To Asia Smoking
visit 1.00] & i i smoker 50.0
NO visit 99.0 |m—— non smoker 50.0 jm=

Tuberculosis Lung Cancer Bronchitis
present 1.04| | | | present 550| { | | present 45.0
absent 99.0 absent 945 absent 55.0

N,

Tuberculosis or Cancer

true 6481 : i i
false 03.5 |——
XRay Result Dyspnea
abnormal 110m § §{ i present 43.6
normal 89.0 |mi—— absent 56.4
Before the example program below will work, the f
the AData Filesd subdirectory of the directory r
straightfrom examples/ directory of the Netica API distribution, that will already be the case. Otherwise
you should obtain the file from the fAexampl es/ Dat

you can build it yourself; the next chapter showw hand at the end of that chapter is a file listing of the
net (it is missing the Bronchitis and Dyspnea nodes, but they are not needed now anyway).
/*

* Dolnference.java

*
* Example use of Netica-J for doing probabilistic inference.
*/

import norsys.netica.*;

public class Dolnference {

public static void main (String[] args){

try {
Environ env = new Environ (null);

/I Read in the net created by the BuildNet.java example program.

Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

24 NETICA API JAVA VERSION 4.18

Node visitAsia = net.getNode ("VisitAsia");
Node tuberculosis = net.getNode ("Tuberculosis");

Node xRay = net.getNode ("XRay");

net.compile();

double belief = tuberculosis.getBelief ("present");

System.out.printin ("\nThe probability of tuberculosis is " + belief);

xRay finding().enterState ("abnormal");
belief = tuberculosis.getBelief ("present");
System.out.println ("\nGiven an abnormal X-ray,\n" +

"the probability of tuberculosis is " + belief);

visitAsia.finding().enterState ("visit");
belief = tuberculosis.getBelief ("present”);
System.out.println ("\nGiven an abnormal X-ray and a visit to Asia,\n" +
"the probability of tuberculosis is " + belief + "\n");
net.finalize();
}
catch (Exception e){

e.printStackTrace();

The program starts by usingew Environ() as described in the previous chapter. Nexty Net()
is used to read the file and create theimebemory. If you wish to have detailed descriptions of any of
these functions, remember that you can look them up in the javadocs.

You can see that the entire program is wrapped within singletok/bdock. Most Netica APl methods
throw NeticaException exceptions, if anythieggoneouss attempted or results.

Next, net.compile() builds the junction tree of cliques and attaches it to the data structure of the
Bayes net, but does not discard/af the information from the original Bayes net. We can now use this
net to diagnose a new patient who has just entered the clinic.

In the next lineNode.getBelief() is called to determine the probability tuberculosis is present:

double belief = tuberculosis.getBelief ("present");

JAVA VERSION 4.18 NETICA API 25

This causes a "belief updating" to be done, which finds new beliefs for all the nodes in thhisatep

can be time consuming if the net is vermgor highly connected. Node.getBelief() is then called

for some other node, it would return almost immediately, because the calculated beliefs have been saved
at each node.

The program then prints out the probability of tuberculosis, which weesis 4.04% from the listing of

the program output below. This is the probability that the new patient has tuberculosis before we know
anything else about him. The number may seem high, but then perhaps this net was built for people
entering a certain iclic, and many of them wouldn't be there unless they have some kind of illness.

An X-ray is taken of the patient, and it comes out "abnormal”. A Bayes net to be used for anything
practical would define the -xay outcome in more detail, but this will da filhe example. We enter this
finding into the net with:

xRay. finding().enterState ("abnormal");

Then we useNode.getBelief() to cause belief updating to occur again (to incorporate the latest
finding) and return the phability that the patient has tuberculosis given that higay came out
abnormal. The probability has now jumped to 9.24%, so we ask him if he has recently made a trip to
Asia. When he answers to the affirmative, and we enter that finding, we thentgeéraulosis
probability of 33.8%.

Exercise for the Reade#fter further testing you might discover that our patient has lung cancer, and
want to enter that as a finding. The lung cancer "explains away" the abnorragl Xnd so our
probability that héhas tuberculosis would fall to 5.00%. Try editing and running Dolnference.java

The output produced will be

>java [€é] Dolnference

The probability of tuberculosis is 0.0104

Given an abnormal X - ray,
the probability of tuber culosis is 0.0924109
Given an abnormal X - ray and a visit to Asia,

the probability of tuberculosis is 0.337716

Given abnormal X - ray, Asia visit, and lung cancer,
the probability of tuberculosis is 0.05

26 NETICA API JAVA VERSION 4.18

For examples involving more complex types oidings, and the retraction of findings, see the "Findings
and Cases" chapter.

JAVA VERSION 4.18 NETICA API 27

4 Building and Saving Nets

In the previous chapter we loaded a Bayes net into memory from a file and then did probabilistic
inference using it. Now we consider how to obtamnit file in the first place. Some possibilities are:

A Obtain a net file of interest from Norsys, anc
downloading from a website, etc.). The file is machine amdatimg system independent. For
exampls of Bayes nets, see: http://www.norsys.com/netlibrary/index.htm

A Create the fil e usi DNgGTfilaspéciication oewtite Bpoogramtieac c o r di n ¢
creates the DNET text file.

A Use the Netica Application program to construc
simple pointandclick drawing, and then save it tdike.

A Cuanttibnsin the Netica API to construct the net in memory. Once the net is in memory you
may use it for probabilistic inference, learning, etc., or you can save it to a file for later usage.

In this chapter we will discuss the lasiethod. Below is a complete program which constructs the
ChestClinic net used in the previous chapter (except, to be more brief, it doesn't include the two nodes
Bronchitis and Dyspnea, which are not required for the inference examples of that thaptére code

in the examples directory dge3 his programBuildNet.java, can be found in thexamples/directory of

your NeticaJ installation.

[

* BuildNet.java

* Example use of Netica-J to construct a Bayes net and save it to file.

*/

import norsys.netica.*;

import norsys.neticaEx.aliases.Node;

public class BuildNet {

public static void main (String[] args){

NETICA API JAVA VERSION 4.18

try {
Node.setConstructorClass ("norsys.neticaEx.aliases.Node");

Environ env = new Environ (null);

Net net = new Net();

net.setName ("ChestClinic");

Node visitAsia = new Node ("VisitAsia", visit,nejjo visito

Node tuberculosis =new Node ("Tuberculosis", "present, absent", net);
Node smoking = new Node ("Smoking", "smoker, nonsmoker", net);
Node cancer =new Node ("Cancer", "present, absent", net);

Node tbOrCa = new Node ("ThOrCa", "true, false", net);

Node xRay =new Node ("XRay", "abnormal, normal”, net);

visitAsia.setTitle ("Visit to Asia");
cancer.setTitle ("Lung Cancer");

tbOrCa.setTitle ("Tuberculosis or Cancer");

visitAsia.state("visit").setTitle ("Visited Asia within the last 3 years");

tuberculosis.addLink (visitAsia); /I puts link from visitAsia to tuberculosis
cancer.addLink (smoking);

tbOrCa.addLink (tuberculosis);

tbOrCa.addLink (cancer);

xRay.addLink (tbOrCa);

visitAsia.setCPTable (0.01, 0.99);
smoking.setCPTable (0.5, 0.5);

/I VisitAsia present absent
tuberculosis.setCPTable ("visit", 0.05, 0.95);
tuberculosis.setCPTable ("no_visit", 0.01, 0.99);

/I Smoking present absent
cancer.setCPTable ("smoker", 0.1, 0.9);

cancer.setCPTable ("nonsmoker", 0.01, 0.99);

/I TbOrCa abnormal normal
xRay.setCPTable ("true", 0.98, 0.02);
xRay.setCPTable (“false",0.05, 0.95);

JAVA VERSION 4.18 NETICA API 29

tbOrCa.setEquation ("TbOrCa (Tuberculosis, Cancer) = Tuberculosis || Cancer");

tbOrCa.equationToTable (1, false, false);

Streamer stream = new Streamer ("Data Files/ChestClinicBuilt.dne");

net.write (stream);

net.finalize(); /I free resources immediately and safely

}

catch (Exception e){

e.printStackTrace();

First, the above program constructs a new empty netrwithNet() and then adds each of the nodes
with new Node() . Each node represents some scalar variable of interest, either discrete or continuous.
The first string passetb the Node constructas the name of the node, and the second is a cemma
delimited list of state names for that nod€he states must bautually exclusivgvalue can't be two
different states at the same time), axtlaustivdit is always in one of the statesJometimes it is easiest

to satisfy the exhaustive conditiog baving a state called "other".

The names of the netodesand stateare passed as Strings. These strings must meet the requirements of
anlDname which are:

A The name mus tGenbraNAKIE AKX ¢=e30) chhracteriothg, inclusive.
A - The name must consi st - antdAZ),didityandundemsdops(a)b et i c

C

A The name must start with an alphabetic charact

A Often they must be unto.gQorapansons dreicasensitve obj ect t

In general, Netica restricts names for all objects in this wayouffind that overly restridtve, then you

can also give the object a "titlevhich is an unrestricted Unicode string. Some objects can have a
"commaent” as well, which is also an unrestricted Unicode string, and it would not be out of the ordinary if
this werethousands of charactdmng.

The states do not need to be named, so instead lifttbé state names, a "2" could be passeddade()

indicating the number of states the node can take on (0 would be passed for a continuous node). Later
the prograntould set the state names of the nodes usioge.setStateNames() . Or they could be

left unnamed butin generalit is recommendedb name thenin order to keep track of the meanings of

the states, and to be able to refer to the states by names, as was done in the last chapter. Then a couple of

F

30 NETICA API JAVA VERSION 4.18

nodes are given titles, which also aren'tlyesequired, but are a bit more descriptive than their names
(the idea is to keep names short for convenience).

Next, the nodes are linked together witlbde.addLink() . A call of the formnodeC. addLink

(nodeP) makes nodeP ‘gparent” of nodeC, which means we wish to express the probabilities of nodeC
as a function of (i.e. "conditioned on") values of nodeP. Usually the link indicates that nodeP causes
nodeC, that nodeC is an imperfect observation of nodeP, or that the tesaredstatistically correlated.

Finally, the conditional probability tables (CPTs) are added. For each node, these are the probabilities of
each of its states, conditioned on #tates of its parent nodes. They are built up by multiple calls to
NodeEx.setCPTable (which is defined in NodeEx.java as a convenient way to call
Node.setCPTable()). The first argument in each call ike hames of the conditioning states of its
parents as a String. Finally comes a list of numbers, being the probabilities for each of the states of the
node.

For example: cancer.setCPTable ("smoker”, 0.1, 0.9) means that the probability that cancer
is in its first state given that its parent is in state "smoker" is 0.1, and the probability that it's in its second
state is 0.9. In probabilistic notation: P(cancer=prgsambking=smokery 0.1

As another example, tbOrCa.setCPTable ("present", "abs ent", 1.0, 0.0) means:
P(TbOrCa=true | Tuberculosis = present, Cancer= absent) = 1.0

If "*" is used as the name of a conditioning state, then it will apply to all values of that parent node.
Likewise State.EVERY_STATE can be used witketCPTable()

Ther is one thing to be cautious of when usiagCPTable . If speed is critical, and you must set large

probability tables, useNode.setCPTable() instead of NodeEx.setCPTable() . For example,
tbOrCa.setCPTable (TbOrCa, "present”, "absent", 1.0, 0.0) could be accomplished
by:

parentStates[0] = O; parentStates[1] = 1; /I present absent

probs[0] = 1.0; probs[1] = 0.0;
tbOrCa.setCPTable (parent_states, probs);

There is an even faster way to set the whole CPT table with one function call. You call
Node.setCPTable(double[] cptTable) , the whole table for the probability array. The table you
pass in should be in remajor form with the last parent varying fastest (the same order the table is
displayed in the CPT editor of Netica Application).

If you wish to give a node a deterministic relationship, rather than probabilistic, you may use
Node.setStateFuncTable().

JAVA VERSION 4.18 NETICA API 31

Now the net is fully constructed in memory, and we could use it for inference, do net transforms, etc., but
in this example we just save itadfile for later use, by callinyet.write() . The resulting file is a pure

ASCII text file which can be read back by Netica API or by Netica Application, whether they are running
on the same computer or another type of computer. filhe@dheres to th®NET format, which is
described in the documertNET File Format”. It will look similar to the below:

Il ~ ->[DNET-1] - >~
bnet Built_ChestClinic {

node VisitAsia {

kind = NATURE;
discrete = TRUE;
states = (visit, no_visit);
parents = ();
probs =

Il visit no_visit

(0.01, 0.99);

2

node Tuberculosis {
kind = NATURE;
discrete = TRUE;
states = (present, abs ent);
parents = (VisitAsia);
probs =
/[present absent /I VisitAsia
(0.05, 0.95, Il visit
0.01, 0.99); I/ no_visit

2

node Smoking {
kind = NATURE;
discrete = TRUE;
states = (smoke r, nonsmoker);

parents = ();
probs =
/I smoker nonsmoker
(0.5, 0.5);

32 NETICA API JAVA VERSION 4.18

node Cancer {
kind = NATURE;
discrete = TRUE;
states = (present, absent);
parents = (Smoking);
probs =
/I present absent I Smoking
(0.1, 0.9, /I smoker
0.01, 0.99); /l nonsmoker
title = "Lung Cancer";

h

node ThOrCa {
kind = NATURE;
discrete = TRUE;
states = (true, false);
parents = (Tuberculosis, Cancer);

probs =
Il true false /I Tuberculosis Cancer
(1, 0, /I present present

1, 0, /I present absent

1, 0, /] absent present

0, 1); /I absent absent
title = "Tuberculosis or Cancer";
b

node XRay {

kind = NATURE;

discrete = TRUE;
states = (abnormal, normal);
parents = (TbOrCa);

probs =
/I abnormal normal /I TbOrCa
(0.98, 0.02, / / true
0.05, 0.95); /I false
3

The DNET file format is a text format, but Netica can also work with a binary format caied. The
binary files are much smaller, they usuaklyad faster, and Netica can encrypt them. To save the above
net inNETA format, you would change the callriet.write() to be:

net.write (new Streamer ("Built_ChestClinic.neta"));

That is, the call is exactly the same as fenN&T file, but the file name has an extension of .neta instead
of anything else. The Netica API call for reading itiggA file is the same as for@NET file; Netica will
recognize each and handle it appropriately. If you wish, you can encrypt the netsdytisattware that
knows the password will be able to read it.:

JAVA VERSION 4.18 NETICA API 33

Streamer stream = new Streamer ("Built_ChestClinic.neta");
stream.setPassword ("MyPassword123");

net.write (stream); /I writes an encrypted file

Encryption is useful when you need to distribute the net with your application for Netica API to use, but
the net contains proprietary information. Encrypted nets can also be read (or created) by Netica
Application, provided thathe user enters the correct password. For a full code example, including
reading encrypted files, see the javadocsstaramer.setPassword()

There are a number of other functions that may be used when constructing a net. For a list of them, see
the "Low-Level Net Modification" section of the " Functions by Category" chapter, and for detailed
descriptions of each one, see the javadocs for the Net class.

For another example of constructing a net, which demonstrates how to build a decision net, create
dedsion and utility nodes, and work withs3ate and continuous nodes, see the "Decision Nets" chapter.

34 NETICA API JAVA VERSION 4.18

5 Findings and Cases

In the "Probabilistic Inference" chapter we saw how to enter positive findings into a Bayes net to do
probabilistic inference (findigs are also known dgvidencé). A positive findingis the observation or
knowledge that some discrete node definitely has a particular value. However, we may discover that
some node definitely doemt have some particular value, and not have any rmfoemation to help us
determine what value it does have. This is calledgative finding

For example, say the node 'Temperature' can take on the valdemedium, and hot. We may obtain
information that the temperature is not hot, although it doesn't distinguish between medium and cold at
all. This is a single negative finding. If later we receive another negative finding that the temperature is
not medium, then we can conclude that it is cold., seweral negative findings can be equivalent to one
positive finding.

A third type of finding is asoft finding(al s o known as onlikelihoot findirlg. Iethis denc e o
case we receive uncertainformation about the value of some discrete node. It could be from an
imperfect sensor, or from a friend who is not always right. Say we have a thermosensor to measure
‘Temperature', which is designed so that when the temperature is hot it is suppsadn. In actual

practice we find that when the temperature is cold the sensor never goes on, when the temperature is
medium it goes on 10% of time, and when it is hot it always goes on. If at a certain time we observe the
sensor on, and want to enthis finding into the Temperature node, then we do so as a likelihood finding.

A likelihood finding consists of one probability for each state of the node, which is the probability that the
observation would be made if the node were in that state.olfaiemperature example, the likelihood
finding would be (00.1,1). A common mistake is to think that the likelihood is the probability of the
state given the observation made (in which case the numbers would have to add to one), but it is the other
way around.

A positive finding is equivalent to a likelihood finding consisting of all Os except a single 1. A negative

finding is equivalent to a likelihood finding consisting of all 1s (or some other nonzero number) except a
single 0. Twoindependenfindings for a node can be combined by compomése multiplication of

their likelihood vectors. If they are not independent, and it is too inaccurate to approximate them as

JAVA VERSION 4.18 NETICA API 35

independent, then they should be combined by adding@ rbdes to the observed node in the original
net, one for each observation, connecting them together to show the dependency, and then entering
positive findings for the child nodes.

Netica has functions for thdirect entry of positive findings, negative findings, likelihood findings, and

also findings that a continuous node has a certain value. If several findings are entered for the same node,
then it combines them as if they were independent observatiotisgearerates an error if they are
inconsistent. Checking for consistency between the findings of one node and those of another node
(given the intemode relations encoded in the net), is only done if belief updating is done after each
finding is enteredwhich will be the case if the net is auipdating (seélet.setAutoUpdate()) or if
Node.getBeliefs() is called between entering findings.

As an examplegonsider the following section of code to enter findingfmte , which has 4 states:

(a) int fst;

(b) Node node;

(© float[] clike, belief;

(d) float[] like = new float[4];

(1) like[O] = 0.6F; like[1] = 0.6F; like[2] =1.0F; like[3] =1.0F;
(2) node.finding().enterLikelihood (like);

3) node.finding().enterStateNot (1);

4) like[O] = 0.5F; like[1] = 0.6F; like[2] = 0.0F; like[3] = 0.5F;
(5) node.finding().enterLikelihood (like);

(6) clike = node finding().getLikelihood();

(7 /I node.finding().enterState (2);

(8) belief = node.getBeliefs()

(9) fst = node.finding().getState();

(20) node.finding().clear();

(12) node.finding().enterState (2);

(12) fst = node.finding().getState();

(13) clike = node finding().getLikelihood();

Step 1 sets up a likelihood vector, and step 2 enters it as a findingder The finding means that an
observation wasnade that would certainly be observedifde were in state 2 or 3, and that would
occur with probability 0.6 ihode were in state 0 or 1. Step 3 enters a negative finding which means
"the value ofnode is not state 1". Steps 4 and 5 enter anotheriliged finding, and then step 6

retrieves the likelihood vector for the accumulated findings so far. It will have the values:

clike[0] =0.3 clike[1] =0.0 clike[2] =0.0 clike[3] =0.5

36 NETICA API JAVA VERSION 4.18

Notice that clike[1] is O del to the negative finding of step 3, and clike[2] is O due to the 0 in the
likelihood finding of steps 4&5.

Step 7 is commented out, but if it weren't it would generate an error because saying "the natlee of
is state 2" is inconsistent with the likedibd finding of steps 4&5.

Step 8 causes a belief updating to be done, and it could return a belief vector with the following values:
belief[0] = 0.9 belief[1] = 0.0 belief[2] = 0.0 belief[3] = 0.1

Even though the accumudal likelihood €like) said state 3 was the most likely value fiode , when

the findings for other nodes, and their relations witlde , were taken into account, state 0 became more

probable than state 1. In general, it is not possible to determingrangtiout what the belief of a node
is going to be based just on its accumulated likelihood findings, except that states with a zero likelihood
will have a zero belief.

Step 9 demonstrategtState() being used to query what finding has been enteredddre. It is
designed to retrieve positive findings, and sincele has likelihood findings, it will just return the

constantvalue.LIKELIHOOD_VALUE .

Step 10 retracts all the findings that have been emtar node, thereby undoing all of the above, and
step 11 enters the positive finding that the valuaarfe is state 2, which won't generate an error this

time like it would have in step 7. WhewtState() is called in step 12, it will now return 2, attte
values ofclike after step 13 will be:

’ clike[0] =0.0 clike[1] =0.0 clike[2] =1.0 clike[3] =0.0

5.1 Cases and Case Files

The set of all findings enteradto the nodes of a single Bayes net is referred tocase A case may be

saved to a file for later retrieval. Case files may consist of a single case, or of many cases. Case files act
as databases; they may be used to swap cases in and out @fsaadditional findings are obtained or
beliefs required, to transfer a case from one net to another, or as data to learn a new net.

Some ways you can make a case file are:

A Use a t ex tlycenstiud ipaccotding tante specfitation below.
A Write a program whose output is a case file.

A Export it -délimited textfilg)3rdm acspreatishelt or database program. Or you can
copy from the spreadsheet or database program,iptstetext editor, and save as a text file.

JAVA VERSION 4.18 NETICA API 37

A Extract it fCcosmsatdat dbasses (®hanabiollowedby ager , ¢é)
Caseset.writeCases(é)

A Use Netica Application to enter findings by pc
from the menu.

A call Netica APl functions to enter the case as
repeat for each case to be putha file.

Case files (singlease or multcase) are pure ASCIl text files. They may contain

/I ~->[CASE- 1] - >~ somewhere in the first 3 lines, to indie to Netica what the file contains, but

that isndbt required. Then comes a |ine consistin
to one variable of the case, and is the name of the node used to represent the variable (sometimes the
variables are calledttributesand the entries in the colummlues i.e. attribute-valueé. The headings are

separated by spaces and/or tabs (it doesn't matter how many).

The case da is next, with one case per line (a sirggese file would only have one such line). The

values of the variables are in the same order as the heading line, and are separated by spaces or tabs (the
columns don't have to "line up" as they do in the exarfij@ds below). The value of a discrete variable is

given by its state name, or if it doesn't have a state name, then by the number symbol, followed by its
state number (e.g. #3). The state names are preferred, since the order of the states maydosooiange

time, and that would render the file invalid.

The value of a continuous variable is given by a number, expressed as an integer, decimal, or in scientific
notation (e.g-3.21e7). If the variable has been discretized, tttenvalue may be given by a state name

or state number, but the continuous number is preferred if it is available. That way, the case file can be
used for different discretizations of that variable in the future. Try to use the correct number of
significant figures, since future versions of Netica may use this information.

A single-case file is the same as one with multiple cases, except it justdaae. There may be as much
whitespace as desired between the lines, including Q&+ style commentslif the values of some of

the variables are unknown for some of the cases, then a question mark or asterisk (? or *) is put in the
file instead dthe value (this is known amissing data

If you read in a case, and the case file has a node value that doesn't correspond to any state of that node in
the net (e.g. the states of net node ‘color' are 'red' and 'green’, and the value for color in the case file is
'blue’), then an error will be generated. An exception to this is if one of the states of the net node is called
"other". Then the case witle read without error, and the finding for the node will be ‘other'.

There are two special columns that a file mayehwhich don't correspond to nodes. One provides an
identification number for each case, which must be an integer between 0 and 2 billion. The heading for
this column is "IDnum”. Identification numbers do not have to be in order through the fileotfdre

38 NETICA API JAVA VERSION 4.18

special column has the heading "NumCases", and indicates the frequency or multiplicity of the case. A
multiplicity of m indicates m cases with the same variable values. It is not required to be an integer, so it
can be used to represent a frequesicgccurrence if desired. The missing data symbol ("*") should not
appear in either of these columns if they exist.

As an example of a case file, here is a listing of "ChestClinic.cas" which is produced by the program
Simulate@ses.java, listed below and included in ¢éixamples/directory of your distribution. Note that

the case file you obtain may be a little different, since random numbers are involved. It has an IDhum
column, but no frequency column.

IDnum VisitAsia Tuberc ulosis Smoking Cancer ThbOrCa XRay Bronchitis Dyspnea
1 no_visit present smoker absent true abnormal absent present
2 no_visit absent smoker absent false normal present present
3 no_visit absent smoker present true abnormal present present
4 no_visit absent nonsmoker absent false normal absent absent

5 no_visit absent smoker present true abnormal present present
6 no_visit absent smoker absent false abnormal present present
198 no_visit absent smoker absent false normal present present
200 no_visit absent smoker present true abnormal present present

Here is listing of SimulateCases.java, thegpam which generated the above case file:
/*

* SimulateCases.java

*

* Example use of Netica-J for generating random cases that follow
* the probability distribution given by a Bayes net.

*/

import java.io.File;

import norsys.netica.*;
public class SimulateCases {

public static void main (String[] args){
int numCases = 200;

System.out.println ("Creating " + numCases + " random cases...");

try {
Environ env = new Environ (null);

/I Read in the net created by the BuildNet.java example program.

JAVA VERSION 4.18 NETICA API 39

Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

NodelList nodes = net.getNodes();

(new File ("Data Files/ChestClinic.cas")).delete(); // since "ChestClinic.cas" may
/I exist from a previous run and we do not wish to append

Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas");

net.compile();

for (intn=0; n<numCases; n++) {
net.retractFindings();
int res = net.generateRandomCase (nodes, 0, 20);
if (res >=0)

net.writeFindings (caseFile, nodes, n, -1.0);

net.finalize();

}
}

catch (Exception e){

e.printStackTrace();

First the program reads in the same nmptér. Thdndtt we
deletes a file named "ChestClinic.cas" if there is one (otherwise it would try to add the cases to this file).
Then, in a loop repeated 20 times it generates a random case from the ChestClinic net. These cases will
be distributed accordg to the probability distribution of that net. Each case is saved to the case file
named "ChestClinic.cas", a sample of which we saw above. We will use this case file in the next chapter,
ALearning From Case Datao.

Here is another example of a case, filés time for cars brought into a garage (notice BatAge, which is a
continuous variable):

Il ~ ->[CASE-1] - >~
Starts BatAge Cranks Lights StMotor SpPlug MFuse Alter BatVolt Dist PlugVolt Timing

false 5.9 false off ? fouled okay ? dead ? ? good
false 1.3 false off ? okay okay ? dead ? none bad
false 5.2 false off okay okay okay okay dead okay none good
true 4.1 true bright ? okay okay ? strong okay strong ?
true 2.7 ? bright ? wide okay ? strong okay ? ?

? ? true bright ? fouled okay ? ? okay strong good
false 1.7 true off okay okay okay okay dead ? none good
true 29 true bright ? ? ? ? strong okay strong ?

b

40 NETICA API JAVA VERSION 4.18

5.2 Casesets

NeticaJ has a very powerful class called CasegetCaseset instanaepresents a set of cases that may
be in a database, in memory or in a disk file (in any of a number of formats). You use the same functions
to operate on Casesets no matter where they are or in what format they are.

To make a Caseset, you first createempty one with one of the Caseset constructors. For example:

Caseset cs = new Caseset();

Then you add cases to th@aseset If you want them to come from a database, you use
Caseset.addCases (Dat ab &as debtilned indhe ,nextgection. Alternatively, you

can add cases from a text file of cases in the format described in the previous section. You first create a
Streamer that refers to the file, usingiew Streamer ("yourFile.cas") . If you are creating the

case file dynamically, it is probably much more efficient to just create it in a memory buffer, say a byte
array, and then create theew Streamer (new ByteArraylnputStream (yourByteArray))

instead. Then you add the cases within theCasesetising:

Caseset.addCases (Streamer streamer, double degree, String control);

With the current version of Netica, you can only add case£asasebnce.

You can write all the cases irCaseseto a file with:

Caseset.writeCases (Streamer file, String control);

That can be used to extract the cases from a database, and then write them out to a text file.

You can uselLearner.learnCPTs() to learn the conditional probability tables of a Bayes net from a
Caseset, as described in the Learning chapter. Future versions of Netica will have many more operations
available for Casesets.

When you are done with the Caseset, you may reduce the esoeqeired by calling:

‘ Caseset.finalize();

5.3 Connecting with a Database

Netica can connect with a database (such as that creatélicinsoft SQL Server, Microsofccess,
MySQL or Oracle), and use the datéhin to learn a Bayes neperformarce test a Bayes nedic. First
you create a DatabaseManager instance using:

DatabaseManager (String odbcConnectionString, String control, Environ env);

JAVA VERSION 4.18 NETICA API 41

The connection string has information on the file locatiothefdatabase, the driver to use (depending on
whether MySQL, MS Access, etc.), any password required to access the database, etc, as described in the
javadocs for th®atabaseManager constructor.

Now that you have the database manager, you can usexi¢ate whatever SQL commands you would
like on the database, using:

‘ void DatabaseManager.executeSQL (String sqlCmd, String control);

If you wish toputall the findings currently entered into a Bayes net asw record of the database, use:

void DatabaseManager.insertFindings (NodeList nodeList, String columnNames,

String tables, String control);

Where ColumnNamess a list of columns in the database table to map to the list of nodes nodeList.

To use the database with Netica functi¢gisch as learning from datgyoufirst create a emptyCaseset
instanceand then add the database to itrwi

void Caseset.addCases (DatabaseManager dbMgr,
double degree, NodeList nodeList,
String columnNames, String tables,

String condition, String control);
Then the resulting Caseset can be used as describediirilzes e s et 6 secti on.

The previous two functions assumed that the Bayes net already had nodes that correspond to columns of
the database (form the nodeList parameter for them). Ifitdogdn, t hen you can cr eat e

void DatabaseManager.addNodes (Net net, String columns, String tables, String condition, String
control)

When you are done th the database manager, you ntégse the connection and free resourbgs
calling:

’ void DatabaseManager finalize();

Here is an example program to learn Bayes net CPT tables from a database. For more explanation on
learnirg , see the next chapter, and especially a si mi
Learningo section.

DatabaseManager db =
new DatabaseManager ("driver=Microsoft Access Driver (*.mdb); dbg=.\\myDB.mdb;UID=dbal;",
"pooling", env);

Net net = new Net();

/I ... Put code to add nodes and links to net here ...

42 NETICA API JAVA VERSION 4.18

/I You could use DatabaseManager.addNodes();

NodelList nodes = net.getNodes();

Caseset cs = new Caseset();

cs.addCases (db, 1.0, nodes,
"Sex, Height, \"Owns a house\", \"Number of dogs\"",
null, "Owns a house' ='yes™, null);

Learner learner = new Learner (Learner.EM_LEARNING, null, env);

learner.learnCPTs (nodes, cs, 1.0);

cs.finalize();

db.finalize();

5.4 Case Files with Uncertain Findings

The case files discussed so far have only had values that were completely certain (or completely missing).
But Netica can also create and read case files having values that are kittolimited accuracy, or only

known to within some likelihood. In fact, Netica has a very elegant, practical and powerful way of
expressing uncertain findings, known as the UVF file format.

When Netica reads in a case containing uncertain findings (for examplet.byadFindings()), it

will enter them into the Bayes net aseft findings, so any probabilistic inference, node absorption
sensitivity analysis, etc. will properly account for them. Also, the operations on case files, such as
learning from cases, test net with cases and process cases, will work properly on case files containing
uncertain values. When learning from suchesasome learning algorithms will work better than others.

For more information on that, and an example of working with case files having uncertain findings, see
the AEM and Gradient Descent Learningo section in

Below is a list of the dierent types of uncertain findings, their syntax in the case file, and what they
mean. Each type of uncertain finding can appear anywhere in a case file where a regular finding normally
would. For example, a UVF file could be a regular case file (agiled in earlier sections), a CSV file,

or tab delimited text file, but with some of the values replaced with entries having the syntax described
below.

Gaussian
Syntax: m+ s m ard s are real numbers

Examples: 5+-2 3.27+ -0.03 0+-le-5

JAVA VERSION 4.18 NETICA API 43

This is for a Gaus s i esaftfindiagl where thenno i the resn afidnsois thea | 0)
standard deviation. Note that there cannot be any space before or after tifibetruncertaintiesni
measurements from lab instruments, or polling results, are often expressed withotation, and

indicate a Gaussian distribution, so they bareasily input into Netica (although some contextghey
mayindicatean interval disibution, which isdescribed below).

Interval
Syntax: [a, b] a and b are real numbers, state names or state indexes preceded by #
Examples: [0, 10] [-3,2.27] [lo, med] [#1 , #3]

This finding ndicates thevalueis known to be within the two endpoints. There may be spaces before or
after the comma or brackets. Intervals of states include both endpoints, so [lo, med] includes states lo,
med and any states betweemtertvals ofcontinuous variablesiclude the lower endpoint, but not the
upper endpoint, so [O, 10] for wvariabl e ofe means
outside the interval it is zero.

Unbounded Interval

Syntax: >b or <b b is a real number, state name or state index preceded by #
Examples: >4.75 <-10 <med >H2

This finding indicateshat thevalueis above a certaipoint, or below acertainpoint Whenb is a state,

the interval includes the endpoint; when ifds a continuous variablehe interval includes the endpoint

only for > intervals (so > is really 0O). The int
be limited by known maximum values for the variable. Likelihood within the interaigsoutside the

interval it is zero.

Set of Possibilities

Syntax: {s1s 2 € .} s each sis a state name, state index preceded by #, Gaussian, interval
or unbounded interval

Examples: {lo, med} {red, blue, yellow } {#5, #7, #1}
{[0,3.5], [4.5, 10]} {[#35,#122], >#500}

This finding hdicates thevalueis known to be one of a listed set of possibilities. There may be spaces
before or after the epma or brackets. The finding can be considered to be a disjunction of the elements.
So if there is only 1 elemefi}, the value is known to be that element, and it can be written as just x.
The likelihoodof elements in the set is one, obde not in the set is zero.

44 NETICA API JAVA VERSION 4.18

Set of Impossibilities

Syntax: ~{s 1, S 2 € o} S each si is a state name, state index preceded by #, interval or
unboundednterval
Examples: ~{lo} ~{black , orange , green} ~{#5, #7, #1}
~{[0, 3.5]}

This finding hdicates thevalueis known tonot be any of a listed set of possibilities. There may be
spaces before or after the comma or braces, but not betivedilde (~) and the brace. This is the same

as "Set of Possibilities" except the "possible" states are those that are not listed, rather than those that are
listed. The likelihood of elements in the set is zero; of those not in the set, it is one.

A negative finding can be represented easily by just listing the state(s) eliminated by the observation.
Likelihood

Syntax: {s1pS 2 p2» €, pn} each sis a state name, s$ta index preceded by #,
Gaussian, interval or unbounded interval. Eagchsm
number between 0 and 1. Somenpy be absent.

Examples: {female .8, male .3} {3+-102,7+ -20.4}
{[0,3.5] .05, [3.5,10] 0.1, other 0.5}

This is the same as a set of potisies, but each possibility is weighted with a likelihood that appears
after it (separated by space). Since the numbers are likelihoods, they do not need to sum toTdmwe.
most commoriype of likelihood vectors are for discrete variabladere each state is listed, followed by
its likelihood. Any states that appear withouhamberhave a likelihood of 1, and any states that don't
appear at all have a likelihood of 0.

Arbitrary likelihood distributions for contiraus variables can be formed by a series of adjacent intervals,
each with its own probability. Or the elements can overlap, and then their likelihoods are combined. For
example {[0,10]1, [2,4].2} would be the combination of a rect function extendnagn O to 10 with

height 0.1, and another rect from 2 to 4 with a height of 0.2.

Another useful distribution that is easy to formaisveighted combination of Gaussians. For example
{3+-1 0.2, 7+2 0.4} is a bimodal distribution with peaks &tand 7.

It is possible to mix weighted Gaussians, intervals, and discrete states within a single { ... } likelihood
vector.

JAVA VERSION 4.18 NETICA API 45

ScaledLikelihood

Syn@x: ~{s1 p,S 2 P2 €. Pn} each sis a state name, state index preceded by #,
interval, or unbounded interval. Eachipa positive
number. Some;pnay be absent.

Examples: ~{red, green, orange .2, yellow .8}
~{[0,2] .4, [26] .2}

This is likea set of impossibilities, butith each entryweightedby a number which appears after it. If

no number appears after it, its likelihood is 0. Entries that have numbers above 1 are indicated to be more
probable tharthose not listed, and entries with numbers below 1 are less probable than the unlisted ones
(unlisted entries have a likelihood of 1).

Complete Uncertainty

Syntax: * just an asterisk

If nothing is known regarding the value of this variable (i.e. missing data), then a question mark ? or an
asterisk * should be used to indicate that. It is equivalent to ~{ehwib a likelihood of all ones.

Complete Certainty

Syntax: v v is a real number, state name, or state index preceded by #

Of course, any finding of completertainty may be represented in the usual way, which is simply the
value it is known to be. Likelihood for that value is 1, and for all others 0.

46 NETICA API JAVA VERSION 4.18

6 Learning From Case Data

Bayes net learnings the process of automatically determining a representative Bayes net given data in
the form of cases (called theining cases Each cas€ i . e . fepresents ardexgmple, event,
object or situation in thevorld (presumably that exists or has occurred), and the case supplies values for a
set of variables which describes the event, object, etc, as specified in the previous chapter. Each variable
will become a node in the learned net (unless you want toégmme of them), and the possible values

of that wvariable wildl become the nodeds states.

The learned net can be used to analyze a new case which comes from the same (ortelypsopitiar)

world as the training cases did. Typically the new case will provide values for only some of the variables.
These are entered as findings, and then Netica does probabilistic inference to determine beliefs for the
values of the rest of theaxiables for that case. Sometimes we aren't interested in values for all the rest of
the variables, but only some of them, and we call the nodes that correspond to these varipdles
nodes If the links of the net correspond to a causal structuie tletargetnodes are ancestors of the
nodes with findings, then you could say that the net has learned to do diagnhosistarngeheodes are
descendants, then the net has learned to do prediction, andtdfrgleénode corresponds to a "class"
variable, then the net has learned to do classification. Of course the same net could do all three, even at
the same time.

The Bayes net learning task sharaditionally been divided into two parts: structure learning and
parameter learning.Structure learningdetermines the dependence and independence of variables and
suggests a direction of causation, in other words, the placement of the links int.thBamameter
learningdetermines the conditional probability table (CPT) at each node, given the link structures and the

data. Currently Netica only does parameter learning (i.e., you link up the nodes before learning begins).
However, you can use Nedido do structure learning by writing your own small program that tests a
number of candidate link structures to find the best one. You write a function which searches through
some candidate link structures that are plausible and practical in your dperiaps also adding trial

| atent vari abl es. For each structure you use Ne

JAVA VERSION 4.18 NETICA API 47

chapter, then test the resulting net with Neticabd
net that scorese highest (perhaps penalized for complexity) is the best structure.

You might not want Netica to learn the CPTs of all the nodes in your Bayes net. Some of the nodes may
have CPTs that have already been learned well, were created manually by an exgerthased on
theoretical knowledge of the problem at hand (perhaps expressed by an equation). Netica allows you to
restrict the learning process to a subset of the nodes, and those nodes are ¢a#ladrigenodes

If every casesupplies a value with certainty for each of the variables, then the learning process is greatly
simplified. If not, there are varying degrees of partial information:

1. If there is a variable for which none of the cases have any information, that vagikbtanin as a
latentvariableor fAhi dden variabl eo.

2.1 f some cases have values for a caeissingdala variab
3. Some values for variables may not be given with certaintypfiytassoftfindings.

It may seem strange to be learning a net that has latent variables, since none of the training cases have any
information on them. You introduce a latent variaddea parent node (or intermediate node) of multiple

child nodes, and Netica uses the correlations among the children to determine relationships between the
latent node with others. The result may be a Bayes net that is actually simpler (has fewer €8T entr

and generalizes better (i.e. performs better on new cases seen). For an example of using Netica to learn a

| atent vari abl e, see t he fiLear n Latent. dnebo net
distribution, or get it from the Norsys nétriary.

6.1 Algorithms

There are three main types of algorithms that Netica can use to learn CPTs: counting, expectation
maxi mi zation (EM) and gradient descent. Of the t
should be used whenever itncalt can be used whenever there is not much missing data or uncertain
findings for the learning nodes or their parents. When learning the CPT of a node by counting, Netica

will only use those cases which supply values of certainty for the node aridtslparents. Obviously,

if any of those are latent nodes, counting will not work.

I f you canét use counting, then you must use EM I
it is usuallybest to try each one to see which gives the better results. Generally speaking, EM learning is
more robust (i.e., gives good results in wide variety of situations), but sometimes gradient descent is
faster. For all three algorithms, the order of theeces d oe s n 6t matter.

48 NETICA API JAVA VERSION 4.18

During Bayes net learning, we are trying to find thaximum likelihoodayes net, which is the net that

is the most likely given the data. If N is the netl &his the data, we are looking for the N which gives

the highest P(N|D). Using Bayes rule, P(N|D) = P(D|N) P(N) / P(D). Since P(D) will be the same for all
the candidate nets, we are trying to maximize P(D|N) P(N), which is the same as maximizing its
logarithm: log(P(D|N)) + log(P(N)) Below we consider each of the two terms of this equation. The
more data you have, the more important the first term will be compared to the second.

There are different approaches taliteg with the second tertog(P(N)), which is the prior probability of

each net (i.e. how likely you think each net is before seeing any data). One approach is to say that each
net is equally likely, in which case the term can simply be ignored, sing# itontribute the same

amount for each candidate net. Another is to penalize complex nets by saying they are less likely (which
is of more value when doing structure learning). Netica bases the prior probability of each net on the
experience and probiity tables that exist in the net before learning starts, which appears to be a unique
and elegant approach. If the net has not been given any such tables, then Netica considers all candidate
nets equally likely before seeing any data.

The first termlog(P(DIN))i s k nown dog likelilmed, nfetheddata D consists of the n
independent cases, @b, &, thdn the log likelihood is: log(P(DIN)) = log(Ri(d) P(d] N) ¢N)P (d

= log(P(d|N)) + log(P(d] N)) + € |Ny). Haochgof tie(lagd)(@|N)) terms is easy to calculate,
since the case is simply entered into the net a
determine the probability of the findings.

Both EM and gradient descent learningrk by an iterative process, in which Netica starts with a
candidate net, reports its log likelihood, then processes the entire case set with it to find a better net. By
the nature of each algorithm the log likelihood of the new net is always as gaodesier than the
previous. That process is repeated until the log likelihood numbers are no longer improving enough
(according to a tolerance that you can specify), or the desired number of iterations has been reached (also
a quantity you can specify)Netica uses a conjugate gradient descent, which performs much better than
simple gradient descent.

To understand how each algorithm works, it is best to consult a refesernteas Korb&Nicholson04,
Russell&Norvig95 or Neapolitan04. Briefly, EM learning repeatedly takes a Bayes net and uses it to find
a better one by doing an expectation (E) step followed by a maximization (M) step. In the E step, it uses
regular Bayes nahference with the existing Bayes net to compute the expected value of all the missing
data, and then the M step finds the maximum likelihood Bayes net given the now extended data (i.e.
original data plus expected value of missing data). Gradient ddsaamng searches the space of Bayes

net parameters by using the negative log likelihood as an objective function it is trying to minimize.
Given a Bayes net, it can find a better one by using Bayes net inference to calculate the direction of
steepest gdient to know how to change the parameters (i.e. CPTs) to go in the steepest direction of the
gradient (i.e. maximum improvement). Actually, it uses a much more efficient approach than always

JAVA VERSION 4.18 NETICA API 49

taking the steepest path, by taking into account its previaus p , whi ch i sonjuwatey it os
gradient descent. Both algorithms can get stuck in local minima, but in actual practice do quite well,
especially the EM algorithm.

Most neural network learning algorithms (such as backpropagation and its improvements) are gradient

descent algorithms. That invites a comparison between Bayes net learning and neural net learning, with

latent variables corresponding to hidden neurons. In the case of Bayes net learning, there are generally
fewer hidden nodes, the learned relationships between the nodes are generally more complex, the result of
the learning has a direct physical interpretatfby probability theory) rather than just being bHboix

type weights, and the result of the learning is more modular (parts can be separated off and combined
with other learned structures).

6.2 Experience

There has been considerable controversy over the best way to represent uncertainty, with some of the
suggestions being probability, fzlogic, belief functions, Dempst&hafer, etc. Currently probability

and fuzzy logic are the most practical methods. Of these two, probability has a much sounder theoretical
basis (at least with respect to the way they are actually used). Howeediciency of using nothing but
probability is the inability to represent ignorance in an easy way.

As an example, suppose you had to draw a ball from a bag full of black and white balls and you couldn't
tell how many white Hés and how many black balls there were in the bag. If you had to supply a
probability that you were going to draw a white ball, it would be 0.5 providing you had no additional
information.

Contrast this with the case where you can count the balls athbeforehand (there are 10 of each), and
you will shake the bag before you draw. In this situation the probability of drawing a white ball is 0.5,
but whereas in the first case you were in a state of ignorance, now you feel much more informed.

If you needed to do probabilistic inference or solve decision problems as in the previous chapters, then the
0.5 probability would be sufficient in either situation. In both situations you should believe and act as if
there was an equal chance of drawing a whii lolack ball. So the concept of experience is not required

for these types of problems, and you do not have to be able to represent ignorance (ignorance is the
endpoint of the experience spectrum). However, for learning and communicating knowlexgseftl

to be able to represent the degree of experience as well as the probability, as we shall see.

If you are going to sequentially draw a number of balls from the bag, then things are different. If you
drew 4 white balls in a row, then in the figtuation your probability that the next ball will be white
should be greater than 0.5, because you are learning (perhaps incorrectly) that there seem to be a lot of

50 NETICA API JAVA VERSION 4.18

white balls. In the second situation your probability of the next ball being white dheléds than 0.5,
because you know that now there are more black than white balls in the bag (10 black and 6 white).

One way to handle this using just probabilities is to keep track of your beliefs about the ratitedbwhi
black balls in the bag. Then you will have many probabilities, one for each possible ratio. Each of these
probabilities will change as you draw a ball, and when you are asked to supply a probability that the next
ball drawn will be white, they wilkll be involved in the calculation. This is sometimes cadecbnd

order probabilities but here it is really just a probability distribution over possible ratios. If you
discretized the possible ratios then it would be easy to set up a Bayes hit, foith the ratio being one

of its nodes.That approach works fine for this simple problem, but you can imagine that if you had many
interrelated variables, that it could become too cumbersome.

If during the learning we consider the conditional probabilities being learned to be independent of each
other, and the prior distribution to be Dirichlet, then we can use beta functiorepresent the
distributions over "probabilities". Each beta function requires 2 parameters to be fully specified, and
Netica uses a probability number and an experience number. This way true Bayesian learning of the
probabilities is easy to do, sincadteasy to express how the beta function should change to account for a
new case (i.e., it is easy to find the posterior beta function, given the prior one and the case). In fact, that
is what the simple equation at the end of this section does.

At each node Netica stores one experience number for each possible configuration of states of the parent
nodes, and with it a vector of probabilities (one probability for each state of the node). Thenerpe

level corresponds roughly to the number of cases that have been seen (normally it is 1 more than the
number of cases). This experience has sometimes been called the "estimated sample size" or "ess". To
save space, Netica doesn't store experienogars for nodes that haven't been involved in any learning

and haven't had a manual entry of experience.

6.3 Counting Learning

Before learning begins (providing there has been no previous learning or entry of probabilities by an
expert) the net starts aff a state of ignorance. All probabilities start as uniform, and experience starts
off as the number of states of the node (which is like a single 1 in each unnormalized CPITF geil)

would rather that it started from some different value, thencgu useNode.setExperTable() to
initialize the experience values before learning starts, but then you must also initialize the CPTs to
uniform. A different way is to apply a simple correction at the end of the learning, which does the same
as Netica Appti a t i Tabted sHarden function.

For each case to be learned the following is done. Only nodes for which the case supplies a value
(finding), and supplies a value for all its pareritaye their experience and conditional probabilities

JAVA VERSION 4.18 NETICA API 51

modified (i.e., no missing data for that node). Each of these nodes are modified as follows. Only the
single experience number, and the single probability vector, for the parent configuration which is
consistent with the case is modified. The new experience number (exper') is found from the old (exper)

by:
exper' = exper tegree

wheredegree is the multiplicity of the case (passed to the learning routine). It is normally 1, but is
included so that yocan make it 2 to learn two identical cases at oncd, @ "unlearn” a case, etc.

Within the probability vector, the probability for the node state that is consistent with the case is changed
from proly: to proly' as follows:

prob' = (proky * exper +degree) / exper'
The other probabilities in that vector are changed by:
proly' = (proh * exper) / exper'

which will keep the vector normalized (exper' and exper act as the new and old normalization factors).

6.4 How To Do Counting-Learning

There are two wgs to do countingearning from cases: singly (ofig-one) or in batch mode.

Here is how you learn from a single case. If the case is not already in the Bayes net, you enter it into the
net as findings (see the "Findsx@nd Cases" chapter). Th&let.reviseCPTsByFindings() is

called with a list of nodes. Nodes not present in the list passed will not have their probabilities revised, so
normally it will be a list of all the nodes in the net. Nodes in the list for wthieltase provides sufficient

data will have their probabilities revised a small amount to account for the case, and their experience
levels increased slightly as well.

The batch mode way of revising probabilities doesctdy the same thing as the emgone way, but for

a whole file of cases at once. You dedit.reviseCPTsByCaseFile() with the file and the same list

of nodes as before, and it does the same thing as tHeyere method for each of the cases in the fi
only much more efficiently than if you were to read in the cases-bprmme and call
Net.reviseCPTsByFindings() each time. See the "Findings and Cases" chapter for more
information on creating a file of cases.

If the case file has a node value thag st correspond to any state of that node in the net (e.g. the states
of net node 'color' are 'red' and 'green’, and the value for color in the case file is 'blue"), then an error will

52 NETICA API JAVA VERSION 4.18

be generated. An exception to this is if one of the states of thmdetis called "other". Then the case
will be read without error, and the finding for the node will be 'other'.

6.5 Example of Counting-Learning

The program below, LearnCPTs.java, will demonstrate learning from cases. This program can be found
in theexamples/directory of your Netica distribution. The program operates by first reading from file a
very simple example net (the net that was constructed in the "Building and Saving Nets" chapter), and
then duplicates it by making a new net and duplicatiigthe nodes into it. Next it removes the

probabilities and experience from the duplicated nodes Maitle.delete Tables() . The idea is to
relearn approximations of those probabilities by
the lastc hapt er , AFindings and Caseso. In effect, w

ChestClinic.dne, but no probabilities and experience (since they were deleted), and then using a set of
cases that match the probability distribution of that net, vllelearn a net that should have a similar
probability distribution. Of course, the more samples that are in the case file, the better the approximation
to the original net.

The program reads all the cases with a single instruction:

reviseCPTsByCaseFile (casefile, learned_nodes, 1.0);

If instead we wanted to examine each case, say to exclude outliers, perform calculations on them, or
otherwise modify them, we could have looped through the case file, entering each as a finding, and used
the instruction

reviseCPTsByFindings (learned_nodes, 1.0);

to incrementally adjust the CPTs. The comment section at the bottom of LearnCPTs.java shows you how
to use this alternate approach.

Finally, the program concludes by saving the new net to file, so that we cgamit with the old. It

will be similar, but the probabilities won't be quite the same. The more cases we put in the case file, the
more similar the learned net will be to the original. Of course, in a real application there would be no

point in releaning a net which already existed; you would use a case file that had real cases in it. But this
demonstration is good to show that the new net comes out similar to the old.

/*

* LearnCPTs.java

*

* Example use of Netica-J for learning the CPTs of a Bayes net from a file of cases.
*/

import java.io.File;

JAVA VERSION 4.18 NETICA API

import norsys.netica.*;
publi ¢ class LearnCPTs {

public static void main (String[] args){

try {
Environ env = new Environ (null);
/I Read in the net created by the BuildNet.java example program.
Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne™));
NodelList nodes = net.getNodes();
int numNodes = nodes.size();
/I Remove CPTables of nodes in net, so new ones can be learned.
for (intn =0; n<numNodes; n++){
Node node = nodes.getNode (n);
node.deleteTables();
}
/I Read in the case file created by the SimulateCases.java
/I example program, and learn new CPTables.
Streamer caseFile = new Streamer ("Data Files/ChestClinic.cas");
net.reviseCPTsByCaseFile (caseFile, nodes, 1.0);
net.write (new Streamer ("Data Files/Learned_ChestClinic.dne"));
net.finalize();
}

catch (Exception e){

e.printStackTrace();

[* === —_== ——===

* This alternate way can replace the net.reviseCPTsByCaseFile
* line above, if you need to filter or adjust individual cases.

*

long[] casePosn = new long[1];

casePosn [0] = Net.FIRST_CASE;

while (true) {

53

54 NETICA API JAVA VERSION 4.18

net.retractFindings();
net.readFindings (casePosn, caseFile, nodes, null, null);
if (casePosn[0] == Net.NO_MORE_CASES) break;

net.reviseCPTsByFindings (nodes, 1.0);
casePosn[0] = Net.NEXT_CASE;

6.6 EM and Gradient Descent Learning

As described in the AAIlI gor i t hms oonesvben passible, bechusev e, ¢
it is much faster and simpler, but in cases where there is a substantial amount of uncertain findings,
missing data or even variables for which there are no observations (!), EM or gradient descent learning

can do amazing thingdf you are unfamiliar with the nature of these learning algorithms, you may first

want to experiment with them on your data a little using Netica Application, and read its onscreen help
about EM learning. The below method can be used to do any of dletical e ar ni ng al gor i t hn

First you create gearner by calling

Learner (int method, String info, Environ env);

passing for method the algorithm you wish to use (one ofLear ner. COUNTING_LEARNING,
Lear ner.EM_LEARNING, orLear ner.GRADIENT_DESCENT_LEARNING.

If you are doing EM learning or gradient descent learning, then if you wish you can adjust the stopping
conditions with:

void setMaxlterations (int maxlterations);

void setMaxTolerance (double logLikelihoodTolerance);
Finally, you perform the learning with:
void learnCPTs(NodeList nodeList, Caseset caseset, double degree)by passing in the nodes whose CPTs
you wish to modify,the data as &aseset (see the previous chapter for instructions on creating a

Caseset), and the degree, which is a multiplier for the frequency of the casesdggge =3 means
act as if every case in tizaseseappeared 3 times).

When you are done thi theLearner , you may reduce the resources required by calling:
| void finalize():

Here is a smal/l code exampl e: (for another, see

’ Streamer netfile = new Streamer ("ParameterlessNet.dne");

JAVA VERSION 4.18 NETICA API 55

Streamer datafile = new Streamer ("Data.cas");
Net net = new Net (netfile, env, "no_visual");
NodeList nodes = net.getNodes();

Caseset cases = new Caseset();

Learnerlearner = new Learner (Learner.EM_LEARNING);
learner.setMaxTolerance (1e-5);

cases.addCases (datafile, 1.0, null);

learner.learnCPTs (nodes, cases, 1.0);

learner.finalize();

cases.finalize();

6.7 Fading

When a Bayes net is supposed to capture relationships between variables in a world which is constantly
changing, it is useful to treat more recent cases with a higher weight tiesirooss. An example might

be an adaptive Bayes net which is constantly receiving new cases and doing inferences while it slowly
changes to match a changing world.

Netica achieves this partial forgetting of the past by udimding. Every so often you call
Node.fadeCPTable() , passing it adegree between 0 and 1, and it will reduce the experience and
smooth the probabilities of the node by an amount dictated by the degree. A degree of 0 has no effect,
while a degree of 1 does roplete forgetting, resulting in uniform distributions with no experience.
Calling fadeCPTable() once withdegree =1 - a, and again withlegree =1 - b, is equivalent to a

single call withdegree =1 - ab.

During fading, each of the probabilities in the no@desditional probability table is modified as follows
(where prob and exper are the old values of probability and experience, and prob' and exper' are the new
values):

prob' = normalize (prob * exper * (ldegree) + degree * BaseExper)

where BaseExper is normally 1 (see section 7.1). exper' is obtained as the normalization factor from
above (remember that there is one experience number per vector of probab8ities

prob' * exper' = prob * exper * (ddegree) + degree * BaseExper

When learning in a changing environment, you would normallyfeadCPTable() every once in a

while so that what has been recentlgrieed is more strongly weighted than what was learned long ago.

If an occurrence time for each case is known, and the cases are learned sequentially through time, then the
amount of fading to be done istegree =1-r Dt \whereDt is the amount of time since the last fading

56 NETICA API JAVA VERSION 4.18

was done, and r is a number less than, but close to, 1 and depends on the units of time and how quickly
the environment is changing. Different nodes may require different values of r. See thée draing
description ofadeCPTable() in the "Function Reference" chapter.

6.8 Performance Testing a Net using RealWorld Data

After you have bui a Bayes net, either by hand based on the judgments of an expert, or automatically by
learning it from data, you may want to test how effective it is. That can be done by using a set of cases
gathered from the reaborld or from the environment in whidhe net will be used. You should use a

different data set than was used to build the Bayes net, otherwise your net may score too high, since it will
probably test slightly better on the training set than other sets. A common approach when learning a
Bayes net from data, is at the beginning to set aside a certain percentage of the (well shuffled) cases to be
used for later testing. These are known agdhecase¢ or fit est dat atiahingcasss oppos
(or Atraining dataod).

The first step is to identify the variables (i.e.
usage ofthenet. Forexarapl i f t he net is to be used as a cl as:c
the value of the class variabl e. I f the net is t
of the variables that are yet to occur in time. Ifthenetis&® used for diagnosi s,)

what the actual faults or internal states are during the diagnosis. The variables (i.e. nodes) that will not be
known during usage are called tin@observed nodes

The next stepistochoms whi ch of the unobserved nodes you wa
These are the nodes that statistics will be generated for, and are calksd tiuales

In the code, you first callnew Net Tester() , passing in a list of the test nodes. If there are some
unobserved nodes that arenot al r eadyuncbsnnoteh e t est
argument (which can also include any of the test nodes if youiwiantakes no diffeence since Netica

will take as the unobserved nodes the union of the two lists).

Then you call Tester.testWithCaseset() , passing in the case file containing the featld data.

Netica will go through the case filerqressing the cases ebg-one. Netica first reads in a case, except

for findings for the unobserved nodes. It then does belief updating to generate beliefs for each of the test
nodes, and checks those beliefs against the true value for those nodesiad Byppe case file (if they

are supplied for that case). It accumulates all the comparisons into summary statistics. If you want, you
can calltestWithCaseset() several times with different files to generate statistics for the combined
data set.

JAVA VERSION 4.18 NETICA API 57

Finally, you call functions to retrieve the actual performance statistics you desire. You can obtain the
error rate withNetTe ster.getErrorRate() , the logarithmic loss withletTester.getLogLoss() ,

the quadratic loss witiNetTester.getQuadraticLoss() and the whole confusion matrix with
NetTester.getConfusion() . Be sure to see the function documentation for each of these functions
and NetTester() and NetTester.testWithCaseset() , for more details on the whole process.
Also, you can contact Norsys for a document with more information on what the various measures mean.

Here is some example program that rates the toy
diagnosis assuming that the other disease nodes (Tuberculosis, Bronchitis, TbOrCa) are also unobserved
nodes:

/*

* TestNet.java

*

* Example use of Netica-J for testing the performance of

* a learned net with the net-tester tool.

*/

import java.io.File;

import norsys.netica.*;
public class TestNet {

public static void main (String[] args){

try {
Environ env = new Environ (null);
Net net = new Net (new Streamer ("Data Files/ChestClinic.dne"));
Node tuberculosis = net.getNode ("Tuberculosis");
Node cancer = net.getNode ("Cancer");
Node tbOrCa = net.getNode ("TbOrCa");
Node bronchitis = net.getNode ("Bronchitis");

/I The observed nodes are typically the factors known during diagnosis:
NodelList testNodes = new NodeList (net);

testNodes.add (cancer);

/I The unobserved nodes are typically the factors not known during diagnosis:
NodelList unobsvNodes = new NodelList (net);
unobsvNodes.add (bronchitis);

unobsvNodes.add (tuberculosis);

58 NETICA API JAVA VERSION

4.18

unobsvNodes.add (tbOrCa);
net.retractFindings(); // IMPORTANT: Otherwise any findings will be part of tests !!

net.compile();

NetTester tester = new NetTester (testNodes, unobsvNodes, -1);
Streamer inStream = new Streamer ("Data Files/ChestClinic.cas");
Caseset testCases = new Caseset();

testCases.addCases (inStream, 1.0, null);

tester.testWithCaseset (testCases);

printConfusionMatrix (tester, cancer);

System.out.println ("Error rate for " + cancer.getName() + " =" + tester.getErrorRate
(cancer));

System.out.println ("Logarithmic loss for " + cancer.getName() + " =" + tester.getLogLoss
(cancer));

/I the following are not strictly necessary, but a good habit
testCases.finalize();
tester.finalize();

net.finalize();

catch (Exception e){
e.printStackTrace();

I

* Print a confusion matrix table

*/

public static void printConfusionMatrix (NetTester nt, Node node) throws NeticaException {
int numStates = node.getNumStates();

System.out.printin ("\nConfusion matrix for " + node.getName() +":");

for (inti=0; i <numStates; ++i)
System.out.print ("\t" + node.state(i).getName());

System.out.printin ("\tActual");

for (inta=0; a<numsStates; ++a){

for (int p=0; p <numStates; ++p)

JAVA VERSION 4.18 NETICA API

System.out.print ("\t" + (int) (nt.getConfusion (node, p, a)));

System.out.printin ("\t" + node.state(a).getName());

}
}

And this is the output it produces:

Confusion matrix for Cancer:
present absent Actual
9 2 present
4 185 absent
Error rate for Cancer = 0.03
Logarithmic loss for Cancer = 0.08219048904200114

59

60 NETICA API JAVA VERSION 4.18

7/ Modifying Nets

A common scenario is that HApplicationgor Netida ARI, assdesBribede s n e

in the ABuilding and Saving Netsod chapter) and s
read the net file and use it to solve probl ems.
enoyh to just enter different findings, you need t

altering the CPT tables, adding new states to a node, changing utilities or converting decision nodes to
nature nodes. Or maybe it is a major operatike taking several net fragments from different nets and
stitching them together to make a new net for the particular problem at hand. This chapter discusses some
ways to modify a net in place, and t hdoncreaten t he
il i brarieso of nodes or net work fragments, and t
Finally it discusses transforms that may be done on a Bayes net to remove nodes or reverse the direction
of links while maintaining the oveilgrobabilistic relationship between the remaining nodes.

7.1 Common Modifications

Most of the functions introduced previously for building a Bayes net can also be used to modify it. For
instance,new Node() and Node.addLink() can introduce new variablesr dependencies, and
Node. delete () andNode.deleteLink() can remove them.

Almost every property of nets and nodes can be altered. Even decision nodes@avebed to nature

nodes Kode.setkind()), or vice versa, without losing their CPT tables or other properties. That can

be useful to model situations with multiple agents, where the nodes that are the decisions of one agent, are
nature nodes to the othagents. First the optimal decisions are found for the first agent, and then those
decision nodes are converted to nature nodes when finding the optimal decisions for the next agent.

When adapting a net to a new environment, states can be addeelafidStates()), removed
(Node.state().delete()), or the order of the states may be changeutié.reorderStates()).
In each case the tables of the nodes being changed, and the tablesabiilthvein, will be appropriately
modified.

JAVA VERSION 4.18 NETICA API 61

The node tables themselves may be modified. Perhaps CPTs need to be changed based on frequency data
that is calculated externally.Or perhaps the utility tables of utility nodes are modified based on
preference information about a particular -@sér, and then new optimal decisions found. The most
common change to CPT tables is to adjust them to take into account case data fronfdthend that is

covered i n det ai | i n t he AiLearning From Case
Node.setCPTable() Node.setStateFuncTable() , Node.setRealFuncTable() ,
Node.equationToTable() andNode.deleteTables()

An advanced program may wish to lay out the visual positions of all the nodes, so that when the Bayes
net file is read by Netica Application, they will béesplayed in the desired layout. Or perhaps chaose
which style to display each node (e.g. Belief Bars, Labeled Box or Hidden). The functions to use are:
Node.visual().setPosition() andNode.visual().setStyle()

7.1 Node Libraries

Often the prbabilistic relation between a node and its parents represents a small piece of local knowledge
which may be applicable in a number of different nets to be used in different situations. That relation
may have been learned from data, or entered by an expexth new net it is placed in captures the
global relations between such local pieces of knowledge, and belief updating combines the local and
global knowledge with the details of some particular case.

For example, suppose thatwmade a simple net consisting of a node called Weather connected to a node
called Forecast. The link between them could go either way, since we can't really capture causation (they
are both caused by other variables, like the previous weather), bubsgut/the link from weather to
forecast because often itds better to put 1inks
you revised its probabilities so that eventually it accurately captured the probabilistic relationship between
the maning weather forecast and the weather for that day. Then you could put it in a library to later graft
into nets for inference involving the weather and its forecast, such as the decision problem discussed in
the "Decision Nets" chapter.

flow_rate

x1 X2 instrument_status

x3

temperature

instrument

As another example, suppose you have a device for measuring the flow rate in a pipe. This sensor will
produce biased readings depending on the ambient temperature, and it can arieak different ways,

each of them producing wrong or inaccurate readings. You can model the sensor with a 4 node net, 1
node for the reading on the sensor, and 3 parent nodes corresponding to: actual flow rate, ambient

62 NETICA API JAVA VERSION 4.18

temperature, and sensor status wkaoken_1, broken_2, etc.). You enter the probabilistic relationship,

and then you disconnect the node from its parents and place it in a library (so it appears as in the above
diagram; disconnection and grafting are explained below). Later, if yauehaet to model a situation in

which you have made two measurements with the device, you just duplicate the device characteristics
node from the library twice into the new net, and graft it to the appropriate nodes in that net (see diagram
below). Note hat if the ambient temperature could be different between the two measurements, then the
room_temp node would appear as two connected nodes, similar to the flow nodes, and the same goes for
the instrument_status node if the device may have broken betweasuraments. Automating the
process of net construction for new situations is an area of active research, with dynamic Bayes nets,
templates and graph grammars being some of the methods used.

(instrument_status)

instrumentl instrument2

Netica makes it easy to maintain libraries of disconnected nodes and subnets. To make a new library, just
usenew Net() . Nodes and subnets can be copied to it usisigcopyNodes() , which can transfe

material from one net to another, and also copies all the links between nodes in a subnet. When a node is
being duplicated, but one of its parents isn't, tNeticopyNodes() will give the duplicated node a
disconnected linkvhere that parent was. Thssa link which only has a pladelder for a parent, and is

meant to be reconnected to another node before being used for inference. In this way the conditional
probability relationship that the node had with its parents is not lost. The disconmektisdgiven the

name of the parent it once had if the link is not already named. If you ever want to check whether a link
is disconnected, us¢ode.getKind()

When you want to use something in the library, youiailcopyNodes() again, this time to duplicate
from the library into the new net. Then you connect up any disconnected links with
Node.switchParent() , which will switch out the parent pla¢®lder, and switch in the new parent.

Below is a code example for the flow measuring instrument described earlier:

Net net = new Net();

Node flow = new Node ("flow_rate", 0, net);

Node temp = new Node ("temperature”, 0, net);

Node broken = new Node ("instrument_status", 5, net);
Node instrument = new Node ("instrument", 0, net);

JAVA VERSION 4.18 NETICA API 63

instrument.addLink (flow);
instrument.addLink (temp);

instrument.addLink (broken);

...

/lé Put uidiprebabili@ic relation for node ‘instrument,
/I € either by learning from cases, or entry by an expert.

...

/I The below will put a copy of the 'instrument’ node,
/I disconnected from its parents, into the library.

/I lts disconnected link names will be those of the old parents.

Net libnet = new Net();
duplicate (instrument, libnet); /I see definition below

libnet.write (new Streamer ("Library.dnet"));

net.finalize();

libnet.finalize();

Il This is a static variant of NodeEx.duplicate(), used above

public static Node duplicate (Node oldNode, Net newNet) throws NeticaException {
NodelList nodes = new NodeList (oldNode.getNet());
nodes.add (oldNode);
NodelList newNodes = newNet.copyNodes (nodes);

return newNodes.getNode (0);

}

Now the library is constructed and saved to file, wiirumentas the only node in it.

At a later session, we use the library to constajpgnet,an application net in which the instrument is
used to measufowl andflow2, which are in the same room at the same temperature:

Net appnet = new Net();

Node flowl = new Node ("flowl", 0, appnet);

Node flow2 = new Node ("flow2", 0, appnet);

Node rtemp = new Node ("room_temp", 0, appnet);

Node status = new Node ("instrument_status", 0, appnet);

...

64 NETICA API JAVA VERSION 4.18

/¢ Put hii&rest of afplication net.

/l € @nnect up nodes flowl, flow2, rtemp, and status.

/l € @éd probabilistic relations for flow1, flow2, rtemp, and status.
...

/I The below will get 2 copies of the instrument node from the library,

[/l and put them in the application net.

libnet = new Net (new Streamer ("Library.dnet"));
Node instrumentl = duplicate (libnet.getNode ("instrument"), appnet);

Node instrument2 = duplicate (libnet.getNode ("instrument"), appnet);

/I The below will graft them to the other nodes in the application net.

instrumentl.switchParent (instrumentl.getinputindex ("flow_rate"), flowl);

instrumentl.switchParent (instrumentl.getinputindex ("temperature”), rtemp);

instrumentl.switchParent (instrumentl.getinputindex ("instrument_status"), status);

instrument2.switchParent (instrument2.getinputindex ("flow_rate"), flow2);

instrument2.switchParent (instrument2.getinputindex ("temperature”), rtemp);

((
((
((
((
((
((

instrument2.switchParent (instrument2.getinputindex ("instrument_status"), status);

Now the application netppnetis ready for probabilistic inference. Perhaps we have positive findings for
the instrument node (i.e. what we read from its dial), and we use them to deteowigeafid their
uncertainties in a way that properly accounts for random (uncorrelated) and systematic (correlated) errors,
as well as all the background knowledge about the situation.

7.2 Net Reduction

Suppose yo have a large net that has been constructed over time by a combination of expert assistance
and probability learning. It shows the relationships between hundreds of variables, and contains much
valuable information that could be used in a hnumber ofréiffieapplications.

Now you want to use it in an application where only 10 of the variables are of interest to you. In every
qguery of the new application, four of them will always have the saaheev For instance, one of the

nodes in the original net might by Gender, and in the restricted application the net will only be used for
females, so we would like to enter a permanent finding of ‘female’ for the node Gender. These nodes are
called context nodes In each of the queries, you will be receiving new findings for 4 other nodes, and
then you want the resulting beliefs of the remaining 2. The nodes that will have new findings are called
findings nodesand those whose beliefs you will want asdled target nodes The hundreds of other

JAVA VERSION 4.18 NETICA API 65

nodes in the net might be involved in intermediate calculations, but you don't care about their values
explicitly.

You can simplify the large net down to owéh just 6 nodes usinget.absorbNodes() . First enter

the permanent findings for the context nodes. Then make a list of all the nodes except the findings nodes
and thetargetnodes, and pass it t¢et.absorbNodes() . The resulting 6 node net will githe same
inference results as the original large one, for the restricted queries you will be making. If you are
guaranteed that there will always be findings for every findings node, then you can then further simplify
things by removing any links that gm findings node P to findings node C, providing C does not have
atargetnode as an ancestor. This means that if yoNude.reverseLink() to make all the findings
nodes ancestors of all tiargetnodes, then you can remove all the links betweerfitioings nodes.

Any findings node that is left completely disconnected by this operation is irrelevant to the query. And
now you can examine the conditional probability relations oftéingetnodes to see directly how they
depend on the findings. Youaw just be able to look up the desired probabilities without doing belief
updating at all!

There is a danger to keep in mind. Even though the reduced net has fewer nodes than the original, it may
actually be more complex, if many Ilinks were added Iet.a bsorbNodes() or
Node.reverseLink() (remember that the size of a node's conditional probability table can be
exponential in its number of parents). Generally speaking, absorbing out context nodes (i.e. nodes with
findings entered) which have many ancestodes results in the worst increase in complexity. The next
worst is absorbing out netontext nodes (i.e. nodes with no findings) which have many descendant
nodes. Absorbing out context nodes with no ancestors, ecorext nodes with no descendantd|

not add any links. Of course, if the numbetafgetand findings nodes igery small, the resulting net

must be simpler, although the transformations to generate it might temporarily require a lot of memory.

7.3 Probabilistic Inference by Node Absorption

From the previous section you may have realized it is possible to do probabilistic inference using node
absorpion, by entering all the findings, and then absorbing all the nodes except for ataiggteode.

The resulting probability distribution for that node can be obtained Mdtlte.getCPTable() , and it

will be a single belief vector (because the node wmene any parents), that is the same as the belief
vector that would be obtained by compiling the Bayes net, and obtaining the beliefs via belief updating
with Node.getBeliefs()

The question iswhich method is fast@r If you need the beliefs for all the nodes, then you would have to
repeat the absorbingpde method for each of the nodes (duplicating the net each time, since it is
destroyed in the process), and so it will usually be far slower. But if you only nedmkliefs of one

node, for one set of findings, and there are many nodes in the net that are irrelevant to the particular

66 NETICA API JAVA VERSION 4.18

qguery, then the node absorption method can be
absorbing the nodes is used).

It should be mentioned that node absorption will also work with decision nets (see the "Decision Nets"
chapter) to find optimal decisions. When a decision node is absorbed it is not removed from the net;
instead it is completely disconnected and its decision table set to the optimal decision function.

When usingNet.absorbNodes() for decision nets, the decision nodes must havéorgetting links,

and if the list of nodes to absorb does not include all thesniodiie net, it must consist of a descendant
subnet (see Shachter86, Shachter88 and Shachter89 for definitions and details of the algorithm used). If
there are missing nrgetting links or missing descendants in the list of nodes to absorb, then
Net.ab sorbNodes() will absorb as many nodes as possible, then generate an error explaining exactly
why it was impossible to proceed.

JAVA VERSION 4.18 NETICA API 67

8 Decision Nets

Chapter 3 was about probabilistic inference using a Bayes net, where the purpose was to determine new
beliefs (in the form of probabilities) as observations were nadfacts gathered. A Bayes net is
composed only ohature nodef whi ch may be fAchanced nodes or HAde
decision nodeandutility nodes(al so known as fAvalued ndedigomhett o a |
(al so known uesncan diiiagr amo) . Deci sion nets can b
will maximize expected ultility.

First, we give a small warning. You may find it overly challenging if your first usage of Netica API is to

build a large decision net withuml t i pl e deci sions, and you havendét h
start by building Bayes nets, then nets with just one decision, and after they have some experience, nets
with a few decisions. Also, they usually have some experience working ngth using Netica
Application, or a similar program, before using Netica API for complex decision nets.

As an example decision net, let's consider a very tiny one from Ross Shachter known as "Umbrella”. It
has 2nature nodesepresenting the weather Forecast in the morning (sunny, cloudy or rainy), and what
the Weather actually turns out to be during the day (sunshine or rdiiston nod®f whether or not to

take an Umbrella, anduwility nodethat measures our level of 8faction. There is a link from Weather

to Forecast capturing the believed correlation between the two (perhaps based on previous observations).

Umbrella 4><Satisfaction>

There is a link from Forecast to Umbrella indicating that we will know the foredzest we make the
decision. It is always the case that links entering a decision node indicate what variables will be known at
the time of the decisionWhat we wish to find in solving the decision problem is a function phogithe

68 NETICA API JAVA VERSION 4.18

value of the decision node for each possible setting of its parent nodes, which maximizes the expected
value of the utility nodes. In other words, we find a contingent plan that tells which decision to make for
each possible set of observationattwill be made when it is time to act on the decision. There is no link
from Weather to Umbrella; if we knew for certain what the weather was going to be, it would be easy to
decide whether or not to take the umbrella.

There are links from Weather and Uralla to Satisfaction, capturing the idea that | am most happy when
it is sunny and | don't take my umbrella (utility = 100), next most when it is raining and | take my
umbrella (utility = 70). | hate carrying my umbrella on a sunny day (utility = 2@)atm most unhappy if

it is raining and | don't have one (utility = 0).

8.1 Programming Example

Below is a listing of the program, MakeDecision.java, which build this decision net in memory, and then
solves it (i.e., finds the optimal decisions). Thisgvean can be found in trexamples/directory of your
NeticaC distribution. Much of it is very similar to building a Bayes net (see the chapter "Building and
Saving Nets" for explanations of those parts). We will discuss the things new to this example.

When a node is first created witbw Node() , it starts off as a nature node. Here we change Umbrella
into a decision node, and Satisfaction into a utility node usinfg.setkind() . Node() is passed the
number of states of the node, and in this exangdeyell as having-8tate nodes, there is also -atate
node, and a continuous node (indicated by passing 0 for number of states). Utility nodes are always
continuous deterministic nodes. We usgse.setRealFuncTable() to build up the relations of a
deerministic node instead dfode.setCPTable() , but it works in a similar fashion.

[*

* MakeDecision.java

* Example use of Netica-J to build a decision net and choose an optimal decision with it.

*/

import norsys.netica.*;

impo rt norsys.neticakx.aliases.Node;
public class MakeDecision {

public static void main (String[] args){
try {
Node.setConstructorClass ("norsys.neticaEx.aliases.Node");
Environ env = new Environ (null);

Net net = new Net();

JAVA VERSION 4.18 NETICA API 69

Node weather = new Node ("Weather","sunshine,rain", net);
Node forecast = new Node ("Forecast", "sunny,cloudy,rainy”, net);
Node umbrella = new Node ("Umbrella""take_umbrella, dont_take umbrella”, net);

Node satisfaction = new Node ("Satisfaction", 0, net); // 0 for continuous node

umbrella.setKind (Node.DECISION_NODE);
satisfaction.setKind (Node.UTILITY_NODE);

forecast.addLink (weather);
umbrella.addLink (forecast);
satisfaction.addLink (weather);

satisfaction.addLink (umbrella);

weather.setCPTable (0.7, 0.3);

1 forecast

1 weather |sunny cloudy rainy

forecast.setCPTable ("sunshine”, 0.7, 0.2, 0.1);
forecast.setCPTable ("rain”, 0.15, 0.25, 0.6);

I weather umbrella utility
satisfaction.setRealFuncTable ("sunshine, take_umbrella", 20.0);
satisfaction.setRealFuncTable ("sunshine, dont_take_umbrella”, 100.0);

satisfaction.setRealFuncTable ("rain, take umbrella", 70.0);

satisfaction.setRealFuncTable ("rain, dont_take _umbrella", 0.0);

net.compile();

/[----- 1st type of usage: To get the expected utilities, given the current findings
forecast.finding().enterState ("sunny");

float[] utils = umbrella.getExpectedUtils(); // returns expected utilities, given current findings

System.out.print ("If the forecast is sunny, ");
System.out.printin ("the expected utility of " + umbrella.state(0) + " is " + utils[0] +

,of " + umbrella.state(1) + "is " + utils[1]);

net.retractFindings();
forecast.finding().enterState ("cloudy");

utils = umbrella.getExpectedUtils();

70 NETICA API JAVA VERSION

4.18

System.out.print ("I the forecast is cloudy, ");

System.out.printin ("the expected utility of " + umbrella.state(0) + " is " + utils[0] +

, of + umbrella.state(1) + " is " + utils[1] + "\n");

/[----- 2nd type of usage: To get the optimal decision table

net.retractFindings();
umbrella.getExpectedUtils(); /I causes Netica to recompute decision tables,
/I given current findings (which in this case are no findings)
for (intfs = 0; fs < forecast.getNumStates(); ++fs){
int[] parStates = new int[1];
parStates[0] = fs; I forecast is the parent of umbrella
int decision = umbrella.getStateFuncTable (parStates, null) [O];
System.out.println ("If the forecastis " + forecast.state (fs) +
"\tthe best decision is " + umbrella.state (decision));
}
net.finalize(); // free resources immediately and safely; not necessary, but a good habit
}
catch (Exception e) {

e.printStackTrace();

}
}

Once the net is built, the program callst.compile() , and thenNode.getExpectedUtils()

to

force a belief updating, which will build a new deterministic table for each decision node. Each
deterministic table represents a function which providegalme for the node for each possible

configuration of parent values. Since the links into a decision node indicate what the decision maker will
know when he is about to make the decision, this function provides a decision for each possible
information sate. The decision functions Netica finds are the ones that provide the highest expected

value of the utility node (or the sum of the utility nodes if there are more than one). The above program

usesNode.getStateFuncTable() to access this decision furmmi, and prints out the following:

If the forecast is sunny, the expected utility of take_umbrella is 24.205606,

of dont_take_umbrella is 91.58878

If the forecast is cloudy, the expected utility of take_umbrella is 37.4418 6,
of dont_take_umbrella is 65.11628

If the forecast is sunny, the best decision is dont_take_umbrella
If the forecast is cloudy, the best decision is dont_take _umbrella
If the forecast is rainy, the best decision is take_umbrella

JAVA VERSION 4.18 NETICA API 71

Note that Node.g etExpectedUtils() or Node.getBeliefs() must be called before
Node.getStateFuncTable() to have Netica build the decision table (and again after entering findings
if you want it optimized for the new findings).

For more information on decision nets in gehemad using Netica to work with them, see the onscreen
help system of Netica Application (and there is also some information in the tutorial at the Norsys
website).

72 NETICA API JAVA VERSION 4.18

9 Drawing Nodes and Nets

NeticaJ includes several Ja&WING components for displaying Netica nets and nodes. The color,
layout, and general appearance of the displayed compoaentery similar to the style used in the
Netica Applicatim program (seehttp://www.norsys.com/netica.htnfor details, to purchase, or to

download a sizeestricted free version.)

With the exception of norsys.netica.VisualNode, all of the classes relevant to graphical display can be
found in the norsys.netica.gui package. The two most important classes in this package are NodePanel
and NetPanel. Each of these is a javax.swing.JPaatetli$plays assorted graphical components (e.qg.,
JLabels) within itself. You typically have full access to these subcomponents, and so can change colors,
fonts, and borders, attach event listeners, set visibility, etc., just as you would with any AWGSWIN
component.

The philosophy behind the development ofgnépackage is to enable you to very easily and rapidly add
graphical displays to your Netichprogams. For instance, the following tiny program is all that is
needed to display a net

import norsys.netica.*;
import norsys.netica.gui.*;

import javax.swing.*;
class DrawNet extends JFrame {

public DrawNet (String netName) throws Exception {
Net net = new Net (new Streamer (netName));
net.compile(); // optional
NetPanel netPanel = new NetPanel (net, NodePanel.NODE_STYLE_AUTO_SELECT);
getContentPane().add (new JScrollPane (netPanel)); // adds the NetPanel to ourself
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
setSize (800, 500); // or supply getPreferredSize();

http://www.norsys.com/netica.html

JAVA VERSION 4.18 NETICA API 73

show();

public static void main (String[] args){
try {
Environ env = new Environ (null);
DrawNet dn = new DrawNet (args[0]);
}
catch (Exception e){

e.printStackTrace();

}

You call the program with java DrawNet =~ SomeNet.dn e (or .neta) and it will draw the net in a
fashion similar to the way that Netiédgpplication does, with the nature nodes drawn using the popular
fibeliefb ar © styl e. | fa differantd ctyle, p thenf eimply replace
NodePanel. NODE_STYLE_AUTO_SELECT in the NetPanel constructor call with the style of your

choice. Here is the window that the comighan

java DrawNet "Data Files/ChestClinic_WithVisuals.dne" creates:

-0l x|

Visit To Asia Smoking
Visit 10|80 Smoker 50.0 [
No_\isit 99.0 NonSmoker 50.0 ;

v / \\

Tuberculosis Lung Cancer Bronchitis
Present 1.0 Present 5.5 Present 45.0]
Absent 99.0 Absent 94.5 Absent 55.0

N, 7
/ o= Chest Clinic

XRay Result OyspRes

Abnormal 11.0 E,Ir;;im :g'g
Normal 89.0 i

Absent 80.0

74 NETICA API JAVA VERSION 4.18

9.1 NeticaNet Visual Propertiesand the guiPackage

Netica files (.dne and .neta files) may optionally contain visual information as to the size, position, and
visual style of the nodes they contain. This visual information is used both by the Netica Application and
the Netical gui package irder to help decide where and how to display the net components. The
general policy of a Netica graphical application is to attempt to make sense of and employ the visual
information that is present, but if it is not able to do so, it will ignore tiatrnation.

9.2 Node Position

If a Netica file has been saved without visual information, then all of the Nodes are by default given a
position of (0,0). To add position information, you may use the Netica Applidatidisplay the net and
then position the Nodes as desired, or from within the Java API you mayodsevisual().setPosition().

Once a NodePanel has been created, it is a Java component that can be moved anywhere (e.g., using
java.awt.Component.setLoaatti()) without affecting the Node.visual() position data. If you want to keep

the displayed position in sync with the Netica visual() position, you must either manage this yourself, or
else confine yourself to moving the component by calling NodePaneBwyQve

9.3 Node Style

If a Node does not contain any style information (introduced using Netica Application or by calling
Node.visual().setStyle(), then Netical will apply certain default styles when creating NodePanels
(NodePankcreateNodePanel()) for that node. Conversely, if the node does contain style information,
that information will be treated as the preferred style when Nétisagiven an option in deciding what
variety of NodePanel to create.

JAVA VERSION 4.18 NETICA API 75

9.4 Drawing Nodes

You do not require the NetPanel class to draw nodes. You may draw the nodes directly using any of
several NodePanels that are supplied:

"Circle"” *Absent”

Belief Bar

true 70.0 [
false 30.0 P /

Text

The NodePanel class itself is an abstract base class that manages a number of common functions of all
NodePanels, suchasdhd&c i ng up to the Netica Node that is repr
if it lacks a title), managing event listeners, and managing display modeaghtad, normal, or grayed).

9.5 Event Handling

Besides being standard JComponents and héedeg able to partake of all the standard Java
AWT/SWING events, NetPanel and NodePanel objects are also
norsys.netica.gurecursingEventListeners.The RecursingEventListener interface provides tvesy
convenient methods addListenerToAllComponents (java.util. EventListeneeventListener) and
removelListenerFromAllComponents (java.util. EventListeneeventListener) These will recursively

run through all the subcomponents of the NetPanel or NodePanel and attach the EventListener to those
subcomponents. Tis, with a single command, you can add an event listener to all the components
within a NetPanel.

9.6 NetViewer

Included in theexamples/ directory of this distributionis a reasonably sophisticated praogra
NetViewer.java. This program allows you to select a net from a list, whereupon it draws the selected net,
and then allows you to edit the net and to enter finding information as well. It illustrates how to attach
mouse events to nodes, to parts ofem(e.g., the belidfars rows), and even to links. If you need to
build a more sophisticated graphical application for selecting nodes, entering findings, and such, you may
wish to use this program as a starting point.

76 NETICA API JAVA VERSION 4.18

9.7 Miscellaneous Useful Features
The NetPanel class supports the concept of a selection set, which is just a NodeList of nodes in the

Ahilited stated (see NodePanel .getDisplayMopde) .
in a net using the setSubnet method.

9.8 Feedback Wanted

We would appreciate hearing whether you find ghepackage useful and how you might like to see it
evolve.

JAVA VERSION 4.18 NETICA API 77

10 Special Topics

10.1 Node Listsand Nodesets

Many operations in intelligent computing require working with lists of variables, and when using Bayes
nets that means working with lists of nodes, so it is not surprising that many Netica functionsdake
lists as argumentsAt first it might not be clear why Netica has two classes to work with sets of nodes,
but their purposes are very different e t i woeki@dossenode list class isNodeList , whosemain
purposeis to pass an ordered list obdes to Netica, or retrieve such a list from Netida It extends
java.util.Vector but requires that all of its elementsh&les, and that they all come from the sanw .

The other classs Nodeset , which is just meant to access neskts defined irNetica Application.
Netica Application has a convenient wayusing the GUI talefine sets of nodegive then a color and

do operations oa wholeset at once. It displays each node with the color of its-setiésince a node
may be a member of seabnodesets, they have a priority order for determining color), and all the-node
set information is sad in the file with the netSince Netical works with the net filesyodesets provide

a convenient way to pass sets of nodes back and forth betwetéra Mpplication and Netied
Depending on their namegme of the sets have special meaning to Netitteers have meaning only to
thedeveloper

NodeList s have the following constructor, copy constructor, access function and finalizer:
NodeList.NodeList (Net parentNet)
Constructs an empty NodeLi@hitial capacityis 100).

NodeList (NodeList nodeList)
Copy constructs a new NodeList from an existing NodeLTste list is duplicated, but not the nodes themselves.

Node NodelList.getNode (int index)
Returns the Nth node of a list (the first node is numbered 0)

void NodelList.finalize ()
Frees the memory used by a list of nodes. Not necessary to call, since Java will do it automatically.

78 NETICA API JAVA VERSION 4.18

As well they inherit the wusual functions from

void NodelList.add (int index, Node element)
Node NodelList.remove(int index)

Node NodelList.set (int index, Node element)
int NodeList.indexOf (Node elem, int index)
int NodeList.size ()

void NodelList.clear ()

Here are some of the most basic functions usimiList s:

NodelList Net.getNodes ()
Returns a lisof all the nodes in the net

NodelList Node.getParents ()
Returns a list of the parents of a node

NodeList Node.getChildren ()
Returns a list of the children afnode

void Node.getRelatedNodes (NodeList relatedNodes, String relation)
Finds all the nodes that bear a given relationship (such@sbected, Markov bldet, ancestors, children, etc.)
with a given node

void Net.getRelatedNodes (NodelList relatedNodes, String relation, NodeList nodeList)
Finds the nodes that bear a givefationshipwith a givenset ofnodes.

Static int NodeList.mapStateList (int[] srcStates, NodeList srcNodes, NodeList destNodes)
Returns an array of the same states asaeS{which is in same order as srcNodes), but in the order of destNodes

And here are all the Nodeset functions:

void Node.addToNodeset (String nodeset)
Adds this node to the nodset of the given name

void Node.removeFromNodeset (String nodeset)
Removes tts node from the nodset of the given name

boolean Node.isInNodeset (String nodeset)
Returns whether thnode is a member of the given nest

String Net.getAlINodesets (boolean includeSystem)
Returns a list of all nodsets defined for this neteparated by commasn priority order The argument indicates
whether to include Netiéas 4nunadéssets otherwise it only puts user defmhenes.

j

av

JAVA VERSION 4.18 NETICA API 79

void Net.reorderNodesets (String nodesetOrder)

Reorders thepriority of thenodesets as requestépriority is used to choosdisplaycolor). Any nodesets

contained in the commseparated string nodesetOrder will become the highest priority, with the nodes earlier in that
list being higher priority. The priority of nodes not mentioned in nodesetOrder will not be modified.

java.awt.Color Net.getNodesetColor (String nodeset)

void Net.setNodesetColor (String nodeset, java.awt.Color color)

10.2 Graph Algorithms

The nodes and | inks of a Bayes net form a fgraph:
algorithms to efficiently find all the deendents of a node, or all its ancestors, connected nodes, Markov
blanket, etc. Netica very efficiently implements these algorithms, and makes them available with the

Node method:

‘ void getRelatedNodes (NodeList relatedNodes, String relation);

To use it, you pasthe relation you desire ass&ing, and a node list to be filled. Then the function puts
all of the related nodes into the list. Faample, to find the Markokblanketof node_A, you could use:

NodeList mb = new NodeList (net);

node_A.getRelatedNodes (mb, "markov_blanket");

After execution, the lislbwill contain all the nodes in the MarkdWanketof node_A.

The allowed relation strings are: patents ", “children ", "ancestors ", "descendents ",
"connected ", "markov_ blanket ", and "d_connected " (t he singular version of each of these
words is also acceptable, and does the same thing). You can add cextlifiers (in any order) to the
string containing the relation. The allowed modifiers are:

"append " means to add to the list that is passed in (otherwise that list is first emptied).
"union " means to add to the list that is passed in and remove all duplicates.

"intersection " means to reduce the passgadist to only the nodes that are in both the original
passedn list and the relation.

"subtract " means to take the nodes that are in the relation away from the raised

n 1

"exclude_self " is only relevant for: dncestors ", "descendents ", "“connected ", and
. Without it the relation list will also include the original node (generation 0).

"d_connected

"include_evidence _nodes " is only relevant for tharkov_ blanket " and 'd_connected
Without it the relation list will not contain any nodes with findings.

For example, to create a list of all the nodes that are both ancestardenfA, and descendents of
node_B, you could use:

80 NETICA API JAVA VERSION 4.18

NodelList ad = new NodeList (net);
node_A.getRelatedNodes (ad, "ancestors");

node_ B.getRelatedNodes (ad, "intersection, descendents");

If you want to find all the nodes that are related to a whgteup of nodes, you use
Net.getRelatedNodes() . It works the same asode.getRelatedNodes() , except that it takes a
list of nodes as an extra parameter

void getRelatedNodes (NodeList relatedNodes, String relation, NodeList ofNodes);

Someti mes you donodot need a I|ist of all the nodes
know if that relation holds between two nodes. For example, you may want to know if node A is an
ancestor of node B. You coulde the function described above to generate the whole list of ancestors of

B, and then check if A is a member, but that would be wasteful. Instead, ydlodaikRelated() ,

like this:

if (node_A.isRelated ("ancestor”, node_B)) ...

10.3 User-defined Data

Someti mes it is very wuseful to be abl e ttdo att ach
anything with that datat just holds the datantil you ask for it back. Thbletica objects that you can
attach data to arenets (et) andnodes Klode).

There are two diffemt ways of attaching data. One is to attach to the Netica object a single Java object.
That object can be whatever you wish, perhaps a large collection. When the Netica object is duplicated or
saved to file, the reference you have attached will beéghoOnly one such arbitrary Java object can be
attached to each Netica object. The relevant methods for attaching and retrieving data in this way are:
Node/Net/Environ.user().setReference() and

Node/Net/Environ.user(). getReference()

void setReference (Object obj);

Object getReference ();

The other way of attaching data to Netica objects
data items as youwish®on obj ect , each wundervadltwe ®wn n¥Ymmer (dat
duplicated if the node is duplicated, and when you save your net to file, Netica will include your data in

the file. Represatative prototypes are:

void setNumber (String fieldName, double fieldValue);
void setString (String fieldName, String fieldValue);
void setObject (String fieldName, java.io.Serializable fieldValue);

void setBytes (String fieldName, byte[| bytes);

JAVA VERSION 4.18 NETICA API 81

void removeField (String fieldName);

double getNumber (String fieldName);

String getString (String fieldName);
Object getObject (String fieldName);
byte[] getBytes (String fieldName);
String getNthFieldName (int index);

To set a user field you pass a name for the field and a reference to your data. When you later call the
method to recover your data, you pass inthene you gave it, and Netica will return you a newly
constructed object identical to the original (except for its hashcode).

For example:

myNode.user().setString (A aut,h & a §;a h
€
String author = myNode.user().getString(iaut)hor o

User fields can be very conveniently viewed or modified using Netica Application, which provides a good
way of transferring information between an arsgr and your Neticd program (as are nodets).

If you wish to find all the user fields defined for some node or net, you can iterate through them with
User.getNt hFieldName()

10.4 Sensitivity

Of significant importance in Bayes net work is a measure of the independence between various nodes of

the net. Using just the link structure anesaparation rules, you can determine which nodes are
completelyind pendent of which other ones (see the #AGrag
changes as findings arrive. However, dependence
functions, you can efficiently determine how much an as yet unkrimding at one node will likely

change the beliefs at another node.

There are many varied uses for the sensitivity meaddueing diagnosisit can specifywhich nodes will

be the most informative in crystallizing the beliefs of the most probable fault ndddidings arrive it

will adjust to account for the new findings, always identifying where further information would be useful

to completethe diagnosis, in a most intelligent mannein a net built for classification, you can

determine which features are the most valuable for performing the iclassift i on (i . e. Afeat L
In an information gathering environment, you can identify which are the most important questions to ask

at each point (to provide information on the variables of interest), based on the answers to questions
already receed, so as to avoid asking unnecessary or irrelevant questdmsn building a model of the

82 NETICA API JAVA VERSION 4.18

world, such asan environmental modelyou can determine which parts of the model most affect the
variables of interest; thereby identiig which parts should be made the most carefully and accurately.

Say you are interested in the beliefs of a particular node hwiréccall thetarget node Then there are a
set of other nodes (called tharying node for which it may be possible to have findings, and you want
to know how much those findings are likely to influence the belieflseofarget node.

To use Neticads sensi t bewsititityy fohjestading thencenstrugtoo:u f i r st

Sensitivity (Node targetNode, NodelList varyingNodes, int whatFind);

You pass it the target nod@&get Node, and a list of the varying nodesryingNodes . You will be
able to use th&ensitivity object returned to find the sensitivity efgetNode to each of the nodes
in varyin gNodes. You also passhat Find to indicate what type of sensitivity calculations you wish it
to be able to perform, which should P&RIANCE_OF REAL_SENSW you wish to be able to call
getVarianceOfReal , ENTROPY_SENS\f you wish to be able to cajjeMutuallnfo, or their bitwiseor

to be able to use bothrinally, you obtain the actual sensitivity numbers by calling onthefe methods
on theSensitivity object

double getMutuallnfo (Node varyingNode);
double getVarianceOfReal (Node varyingNode);

If the target node is discrete with no real number levels associated with the states, then the mutual
informationis the only function that can be used. If the target node is a discretized continuous node, or a
discrete node with a real number associated with each state, then the vwafri@atemeasure is the
recommended measure, although you may wish to use nwfimahation in some situations. The mutual
information is the reduction in entropy of the target node belief distribution, due to a finding at the
varying node (over each possible finding, weighted by the probability of obtaining that finding).

When you call one of the two functions, it will return the sensitivity of the origimgdt Node (used in

the construction of th&ensitivity) with respect to thearyingNode passed in. The first time it is
called, it takes longer t@turn, since it is calculating the results for all thesingNodes that were used

in the construction of th&ensitivity (because it can save time doing them all at once), but it
remembers the results so subsequent calls are very fast (unless a findargetining else in the net
changes, in which case it mustaa@culate).

Mutual information is symmetric (i.e., it has the same value when the target node and varying node are
reversed), so you can ugetMutuallnfo() to efficiently determinehow muchobtaining a finding at
one node will likely effect the beliefs of all the rest of the nodes in the net.

When you are finished using &ensitivity object, you can safely free its resourcessing
finalize() , Or you can leave that to the JVM.

JAVA VERSION 4.18 NETICA API 83

Currently Net i canbrksordyomBayes rietg,iaridyot decisioh nets.i You can also use

Netica Application to do sensitivity analysis by chooshework Y Sensitivity to Findings from the

menu. Formae i nf or mati on on Net i cao supppra@norsyd.cayandask of s e
for the ASensitivityo document.

10.5 Stochastic Simulation

Netica can be used to generesadom cases (akas y n t h €),twhich aré easea Wwhose values follow
the distribution represented by the Bayes net, including any findings that it has.

This synthetic data may be browsed by people to get ddietfle type of cases to expect, or used to test
peopleon their predictive or diagnostic ability. It can be used to learn other Bayes nets, or other machine
learning representations, such as neural nets, decision trees or decision rules.

Perhapsts most valuable use is when the Bayes net is a physical model ofveorédhkituation, and the
synthetic data provides stochastic simulations. The output of those simulations can then be analyzed by
other programs. For example, the Bayes net may haodarehouse and distribution scheme, which can

be tested under various conditions to check its performance. In a similar vein the Bayes net may model a
control system, economic system, political environment, computer netatork

To generate a synthettase, thenethod of Neto use is:
int Net.generateRandomCase (NodeList nodeList, int method, double timeout);
where themethod argument determines which algorithm Netica uses (for example, forward sampling

with rejecton or by junction tree). For an example of a small program using it, see the
Si mul ateCases.java example program in the AFindin

mailto:support@norsys.com

84 NETICA API JAVA VERSION 4.18

11 Equations

The relation between a node aitsl parent nodes can lefined using an equation if desired. This
eliminates the burden of building conditional probability tables (CPTs) manually. It is possible to use an
equation for continuous or discrete nodes, and for probabilistic ormdeistic relations.

Equations are-handc&d nfdoroth difshexpressing a CPT. Si
usually requires that CPTs be available, equations must be converted to tables (by calling
Node.equationToTable()) before compiling a netpr doing certain net transforms like absorbing

nodes or reversing links. Netica then uses the tables in the same way as if they had been entered directly.

Sometimes Netica uses an equation directly, without the need for a thbtalings are entered for all

the parents of a node, and that node has a deterministic equation, then the node is given the exact value
computed from the equation (which can then propagate to its children) dulitgreinistic propagation

phase thatsi the first step of belief updating (se®de.calcValue() and Node.CalcState()).

Having this phase increases both accuracy and spe
Another time Netica uses an equation directly is durisgpchastic simlation (calling
Node.generateRandomCase() with method=FORWARD_SAMPLING

11.1 Simple Examples

Here are some examples of using equations in Netica:

Suppose X is a continuous variable representing the position of a moving object, and is dependent on its
parent nodes: Velocity, Time, and Start position. This equatiomd compactly express their
relationship:

X (Velocity, Time, Start) = Start + Velocity * Time

Now suppose that the start position is zero, but that there is some uncertainty about the end position,
given by the normal distribution with standard deviati

JAVA VERSION 4.18 NETICA API 85

p (X | Velocity, Time, S) = NormalDist (X, Velocity * Time, S)

Here is an example of a discrete node Color with states red, blue and green. As a parent, it has the
discrete node Taste with states sour, salty and sweet. The below is a deteragjnéimn giving Color
as a function of Taste, which demonstrates the use of the conditional operator ?:

Color (Taste) =
Taste==sour? blue: Taste==sweet? red:
Taste==salty? green: gray

Finally, consider a discrete node Color, which is indicatkintaon the values red or blue depending on
whether the parent node Taste is sweet or not, but that works imperfectly:

p (Color | Taste) =
(Taste==sweet) ? (Color==red 7 0.9 : 0.1): 0.5

For more examples, see the ASpecialized Exampl eso

11.2 Equation Syntax

Netica equations follow most of the usual standards for mathematical equations, and are similar to
programming in Java, C or C++. The usual mathematical operators *;+/, etc.), and the usual
functions (minabs, sin, etc.) can be used, parenthesis are used for grouping, and numeric constants are in
their usual form (e.g. 3;4.2, 5.3€l2).

Left-Hand Side: For a deterministic node, the part of an equation to théhdaftl side of the equals

symbol consists of the name of the node, an open parenthesis, a list of the names of the parents separated
by commas, and a close parenthés$igou have defined link names, you must use those instead of parent
names). For instance, if the equation is for node Position, and the parents of Position are Velocity, Time
and Mode, the left hand side could be:

Pasition (Velocity, Time, Mode) = ...

Note that the spaces are not required, there may be more spaces if desired, and the parents can be in any
order.

For probabilistic nodes (i.e. "chance nodes"), theHaftd side consists of a lewcase "p", an open
parenthesis, the name of the node, a vertical bar, a list of the names of the parents (or link names)
separated by commas, and a close parenthesis. If the node mentioned above had been a probabilistic
node, the left hand side of itguation could be:

p (Position | Velocity, Time, Mode)=..

86 NETICA API JAVA VERSION 4.18

Right-Hand Side: The righthand side of an equation may consist of numbers, state hames, conditionals,
variables (i.e. parentades), constant nodes, and binlfunctions, constants or operators. Probabilistic
equations willnormally also contain the node the equation is for on the -ightd side (possibly in
several places).

Nodes Allowed: The only nodes which may be men#ohin an equation are: the node the equation
describes, its parents, and any constant node.

Whitespace: As many spaces or line breaks as desired may be placed between any two symbols.

Comments: Comments may be embedded in equations, and they will beeidjiby Netica. Everything
between /* and */ will be interpreted as a comment, as will everything between // and the end of the
line.

All Values: If the equation is for a probabilistic node, its rigfiaind side must provide a probability for

althe nodeds possible values (so the name of the no
nodeColor (with states red, orange, yellow) has pareamp (with states low, med, high), its equation
could be:
p (Color | Temp) =
Temp == high ? (Colo r==yellow ? 1.0:0.0) :
Temp == med ? (Color==orange ? 1.0: 0.0) :
Temp == low ? (Color==orange ? 0.2 : Color==red ? 0.8 : 0.0) : 0
If you use the buitin distributions (such as NormalDist), the above rule is automatically taken care of.
One exceptin to the above rule is if a node is boolean. Then only the probability for the true state need
be given. For example, if nodke Falls is boolean, its equation could be:
p (It_Falls | Weight, Size) =
Weight/Size > 10 ? 0.10 :
Weight/Size >5 ? 0.03:
0.01
Differences between standardlava (or C/C++) equation syntax: The Netica equation syntax is the
same as in the Java (and C and C++) programming languages, except the part to the lafsajriment
operator (=) is different, and no semicolon is required at the end of the equation.
Furthermorethe Jav&C/C++ bitwise operators (such a&, |, ~, ”) are not available in Netica, but the
logical operators&&, ||, ! are. InadditonNet i ca has a | ogical oO6xoré func

the bitwise xor operatoft of Java/C/C++is insteadusedasthe power operator by Netica (thus 2"3=8).

All of the C Standard Library math functions (sin, log, sqrt, floor, etc.) areadgibnd use the same
names.

JAVA VERSION 4.18 NETICA API 87

11.3 Equation Conditionals

Suppose continuous node X has the parents Y and B. If you wanted to give P(X]Y) a different equation
involving X and Y for diferent values of B, you could write a conditional statement using the ? and :
operators, like this:

p(X]Y,B) =
(B <2)? NormalDist (X,3+Y,1):
(B <6) ? NormalDist (X,2 +Y, 3):
UniformDist (X, 0, 10)

The conditions are evaluated arder, so the first covers all cases where B the second covers cases 2
¢ B < 6, and the last covers the remaining cases (i.2.68. So, if B is less than 2, X is distributed
normally with mean 3+Y; if it is between 2 and 6 then the mean is amd;if it is over 6 then X is
distributed uniformly.

If there are more parents, this sort of construct can be nested to provide a tree structure of possible
contingencies.

Here are a couple more examples. They show a way to condition over the statissi@fta node:

pP(X|Y,B) =

(B == yellow) ? NormalDist (X, 2, sqgrt (Y)) :
(B == orange) ? NormalDist (X, 4, Y) :
(B==red) ? NormalDist(X,6,Y"2):0

p(X[B) =
member (B, CA, TX, FL) ? NormalDist (X, 3, 1) :
member (B, MA, WA) ? NormalDist (X, 5 1)

member (B, NY, UT, VA) ? NormalDist (X, 7, 2) :
UniformDist (X, 0, 10)

Notice that the Afal/l througho case of the first
designer is counting on B to be oneyellow, orange or red. If B ever has another state, then when

Netica is converting the equation to a table it
nonzero probability was discovered by samplingo (

In the last example, the fall through case gives a uniform distribution. If extra states are later added to B,
then they will just fall through and use the uniform distribution.

88 NETICA API JAVA VERSION 4.18

11.4 Converting an Equationto a Table

As mentionedearlier, all equations must be converted to tables before compiling a net or doing net
transforms like absorbing nodes or reversing links. The procedure is done by the following three steps:

1. If the node, or any of its parents, is a continuous node that has not yet been discretized, then call
Node.setLevels() to discretize it. The finer the discretization, the more accurate, but the
bigger the tables will be.

2.1 f the node doseguatidn, cabidderseBauchtyn() h a wassirg in the equation
string.

3. Finally, call Node.equationToTable() . Note that if you later change the equation for the
node, or the discretization of the node or of any of its parents, or the finding of a cond&ant no
referred to by the equation, you must repeat this step before the changes will take effect. With
the parameters passed to this function you can control the number of samples in any Monte
Carlo integration that is required, whether the final CPT willude uncertainty due to the
sampling process, and you can blend tables with those produced by learning from data, other
equations, or manual CPT entry into Netica Application.

If Netica reports errors in the above steps, it iemfhelpful to debug the equation using Netica
Application. If there is a problem with the syntax of an equatignen you enter it into Netica
Applicationbés node pr opert yonihe paoblenghilelihe grror ntedsage c ur s o
is disgayed From Netica Applicationbés menu, you can ¢
going to be any problem witthe equationand conveniently view the resulting CPT to see if it is what

you expect.

11.5 Equations and Table Size

The size of the table generated is the product of the number of states of the node with the numbers of
states of each of its parent nodes. So if a node has many states, or many parents, then the tables may be
very large, and Netica may report thatt doesnot have enough memory f
alleviate the problem by eliminating unnecessary parents, introducing intermediate variables, or using
more course discretizations (perhaps have more than one node for the same variable, vetit differ
discretizations depending on which node it is a parent for). If Netica creates extremely large tables, it

may starve other processes of memory, or result in very slow virtual memory hard disk activity, so you

might want Netica to instead just repditat it doesndt have enough memor:
the amount of memory available to Netica wthviron.setMemoryUsageLimit()

JAVA VERSION 4.18 NETICA API 89

11.6 Link Names

In the simplest way of writing equations, the names of the parent nodes appear in the equation. However,
you might want a more modular representation, so that you can disconnect some of the parent nodes and
hook the node up to new patemvithout having to change all the parent names within the equation.

Or perhaps you duplicate the node to use with new parents. Or you put the node in a network library
without any parents. Or you want to copy the equation from one node to anotheut withnging all
the node names.

The way to do that is to useput namessometimes callelink names They provide an argument name

for each link entering the node (and therefore a proxy for each parent node). You can set them with
Node.setinputName() . You refer to them in your equation in exactly the same way you would the
corresponding parent name. When a parent is disconnected, the link name will remain.

Note. If link names are defined for a node, tmayst be used instead of the parent names.

117 Referring to States of Discrete Nodes

To refer to the states of a discrete or discretized node, You can use the state nadieseteaode as
constants in @ equation. For example, if nod&olor has statesed, green blue and yellow, and node
Temperaturdnas statesool andwarm, you could write:

Temperature (Color) = member (Color, red, yellow) ? warm : cool

Each state name only has meaning relatve¢othn ode it ds f or . Usually wh
Netica can identify that node from context. Ho we
refers to (e.g. it gives an unknown value error message), you can indicate which node by following the

state name with a doubtlash and then the name of the node. Continuing with the above example, if a

new nodeSwitchcould take on the values 0, 1 and 2, you could write:

Color (Switch) = select0 (Switch, red -- Color, yellow, blue)
TheCdl or 0 evpwi meod an fAyell owdo and fAbluedo, because
Col or o, but it could be put there as wel |l

If a discrete node has a numeric value associated with each statedsaetLevels()), that numeric
value can be used in an eqoatinstead of the state name.

90 NETICA API JAVA VERSION 4.18

Alternatively, you can use the state index (numbering starts at 0) preceded by a hash # character.

However, it is recommended to use the names or values, because they are more readablepleseerror
and more robust to fute changes to the node, such as the addingadezing of states.

11.8 Constant Nodes as Adjustable Parameters

Sometimes it is useful to have an equation paramieae normally acts as a fixed constant, but which you
can change from time to time. That is the purposecohatant node

You create a constant node by addinmture node to the network, and then converting it to a constant
nodeby callingNode.setKind() . You can also set other characteristics of a constant node in the same
way as any other node, such as giving it state naieset or change the value of a constant node, enter
the value in the same way as you would entendirfp.

You can refer to the value of a by usieg thenconstamto d e

an

nodebds name. It should not appear in the argumen

required.

When youconvert the equation to a table, the value of any constant nodes it references will be used. If
you change the value of a constant node, you must rebuild the table for the change to take effect.

11.9 Tips on Using Equations

1 It is often helpful to debug equations using Netica Application. If there is a problem with the
syntax of an equation, it leaves the cursor on the probieita it displaysan error message. You

can choose fAEquation To Tabl elpview thoresultndi@T me n u

to see if it is what you expected.

1 The tables generated by equations may result in large files (and therefore slow reading), so you
may want r emove tNhdedelnterables§ 6 thefdyd savig ivid fite.hLater,
whenyou restore the net from file, you calbde.equationToTable() to fully restore them.

1 If you need to define intermediate variables to simplify the equations, implement them as new
(intermediate) nodes.

t

JAVA VERSION 4.18 NETICA API 91

11.10 Specialized Examples

State Comparisons Suppose the states of node Source are CA, TX, FL, BC and NY. The states of node
Dest are TX, NY, MA and UT. We want to know if crdssrder travel is required to transport from
Source to Dest, and that is indicated by the booleaa Moavel. The equation below works even though
nodes Source and Dest have different sets of states, and in a different order.

Travel (Source, Dest) = (Source != Dest)

Additive Noise: Say you want to represent something like:

x1 =x2 + gauss (0, 0.2) hich could indicate that x1 is the same as x2, but with the addition of gaussian
noise having mean 0 and s = 0.2. You could do this by defining a new node x3, and setting the equations
of x1 and x3 as:

X1 (X2, X3) = X2 + X3
p(X3) = NormalDist (X3, 0, 0.2)

Multiple Discretizations: Sometimes it ideneficialto use more than one node to represesingle
continuous variablehut with each discretized differentlyFor example, the more course one may be a
parent foranother node whose CPT would be too big with a finer discretization, while the finer one would
serve as a parent for nodes requiring more accuracy. Put a link from the finer node to the courser, and
give the courser node an equation like:

X5 (X20) = X20

Noisy-Or: To create a noisgr node, just create a regular boolean nature node, put links to it from the
possible causes, give it a noisyequation, and use that to build its CPT.

For example, if C1, C2 and C3 are boolean nodes representing causekeah mmale E, and there are
links from each Ci to E, then E could have the naisgquation:

p(E|C1,C2,C3)=

NoisyOrDist (E, 0, C1, 0.5, C2, 0.3, C3, 0.1)
For its meaning, see the NoisyOrDist description. The causes, and even the link paramdiersyaa
complex expressions. For example:

p (Bond | Temperature, BackTemp, Pressure, Switch, Eff)=
NoisyOrDist (Bond, 0.001,

Temperature > BackTemp, 0.5,

Pressure == high, 0.3,

Switch, 0.9 * Eff)

For mor e i nfor mat i o nROr dNoisyAnd, iNoisyMai antd NaisgSans funitioris,s y

cont act Norsys for the ANoi sy Or, Ma x , Sumd docum

92

NETICA API

JAVA VERSION 4.18

11.11 Equation Constants, Operators, and Functions

A: Built -in Constants

The followingconstants may be usededqguations:

pi =3.141592654

deg =radian per degree = pi/ 180

If you wish to have the constaset (= 2.7182818) in your equation, usep(1)

B: Built -in Operators

Both the functional and the operator notations shown below are accepted.

Functional Notation

neg (x)
not (b)

equal (x,Y)
not_equal (x, y)
approx_eq (X, y)
less (X, y)
greater (X, y)
less_eq (X, Y)
greater_eq (X, y)

plus (X 1, X 2,..X n)
minus (X, Y)

mult (X 1, X 5, ...X n)
div (X, y)

mod (x, base)

power (X, V)

and(b ,b 5 ...b n)
or(b ,b 5 ..b n)

if (test, tval, fval)

Operator Notation

- X
'b

X ==
Xl=y
X~=y
X<y
X>y
X <=y
X >=y

X1 +X o +...+X n

X -y

X1 *X 5 *..*X n
xly

X % base

XNy

b, && b, &&...&&Db n
by |Ib 2 |...]Ib n
test ? tval : fval

C: Built-in Functions

Netica contains an extensive library of bunltfunctionswhich you can use in your equations.

The probability distribution functions all have a name that ends with "Dist" (e.g. NormalDist). Their first
argument is always the node for which the distribution is for. So if node X has parent m, you could write:

JAVA VERSION 4.18 NETICA API 93

P (X | m) = NormalDist (X, m, 0.2)

to indicate that X has a normal (Gaussian) distribution with mean given by parent m, and a standard
deviation of 0.2.

Common Math

abs (X) absolute value

sqrt (X) square root (positive)

exp (x) exponential (e " x)

log (x) logarithm base e

log2 (x) logarithm base 2

10g10 (x) logarithm base 10

sin (X) sine (xis in radians)

cos (x) cosine

tan (X) tangent

asin (x) arc sine (result is in radians)

acos (x) arc cosine

atan (x) arc tangent

atan2 (y, x) atan(y/x) but considers qua drant
sinh (x) hyperbolic sine

cosh (x) hyperbolic cosine

tanh (x) hyperbolic tangent

floor (x) floor (highest integer O x)
ceil (x) ceiling (lowest integer 0 x)
integer (X) integer part of number (same sign)

frac (x) fraction part of number (same si gn)

94

NETICA API

JAVA VERSION 4.18

Special Math

round (x)

roundto (dx, x)

approx_eq (x, y)

egnear (reldiff, x, y)

clip (min, max, x)

sign (X)

xor(b 1,b 5 ...b n)
increasing (x L X 2, .. X n)
increasing_eq (x 5L X 2, .. X n)
min (X 1, X 2, ... X n)

max (X 1, X 2, ... X n)

argmin0/L (X o, X 1, ...X)
argmax0/1 (X ¢, X 1, ... X n)
nearest0/1 (val, ¢ »C 1,...C n)
select0/1 (index, ¢ o C 1,...C n)

member (elem,s 1,S 5, ...S n)
factorial (n)

logfactorial (n)

gamma (x)

loggamma (x)

beta (z, w)

erf (x)

erfc (x)

binomial (n, k)

multinomial (n LN oo .. ny)

Continuous Probability Distributions

UniformDist (X, a, b)
TriangularDist (x, m, w)

Triangular3Dist (x, m, w LW)
TriangularEnd3Dist (x, m, a, b)
NormalDist (x, m s)
LognormalDist (x , h, 1)
ExponentialDist (x, 1)

GammabDist (x , a, b)
WeibullDist x, a, b)

BetaDist(x , a, b)
BetadDist(x , a, b,c,d)
CauchyDist (x, m s)
LaplaceDist (X, m b)
ExtremeValueDist (X, m s)
ParetoDist (x, a, b)

ChiSquareDist (X, n)
StudentTDist (x, n)

FDist (X, Ny, o)

JAVA VERSION 4.18 NETICA API 95

Discrete Probability Distributions

SingleDist (k,)
DiscUniformDist (k, a, b)
BernoulliDist (b, p)
BinomialDist (k, n, p)
PoissonDist (k, m)
HypergeometricDist (K, n, s, N)
NegBinomialDist (k, n, p)
GeometricDist (k, p)
LogarithmicDist (k, p)

MultinomialDist (bc, n, k LP K op 2.k mP m
NoisyOr Dist (e, leak, b uPp b 2p 2...b mP n)
NoisyAndDist (e, inh, b uP b 2p 2...b mP n)

NoisyMaxTableDist (...)
NoisySumTableDist (...)

11.12 Special Math and Distribution Functions Reference

Legend: Lilu] = Discrete Probability Distribution

(thefirst argument is a discrete variable that the distribution is over)

[A] = continuous Probability Distribution

(the first argument is a continuous variable that the distribution is over)

approx_eq (X, y) X~=y = eqnear (26, X,)
where x and y are unrestrictegal numbers

ReturnstrUEIff x is equal toy, within a small relative tolerance.

Usually the operator form of this function is most convenient: ~= y

It is meant for comparing computed real ragnvalues that might not lexactlyequal due to slight numerical inaccuracies.

To have control of the tolerance, egnear .

argmax0 (X o, X 1, ... X n) =i s.t.(xO ;) forallj
argmaxl (X 1, Xz, ...X n)
where x; are unrestrictedeal numbers

Returns the index (position in list) of the argument with the highest value. If there are several with the same hightsrvalu
the index of the first occurrence will be returned. The figtment has index 0 #rgmax0 is used, or index 1 @rgmax1 is
used. At least one argument must be passed. Semaksargmin , select

Example: argmax0 (1, -6.6,3.4,1.26, 3.4) returns 2
argmax1 (1, -6.6,3.4,1.26, 3.4) returns 3

96 NETICA API JAVA VERSION 4.18

argmin0 (X o, X 1,...X n) =i st (xO ;) forall]
argminl (X 1,X 2,...X n)

where x; are unrestrictedeal numbers

Returns the index (position in list) of the argument with the lowest valuberk tare several with the same lowest value, then
the index of the first occurrence will be returned. The first argument has indexginiinO is used, or index 1 @rgminl is
used. At least one argument must be passed. Semialsargmax , select

Example: argminO (10, 6.6, 3.4, 126, 3.4) returns 2
argminl (10, 6.6, 3.4, 126, 3.4) returns 3
BernoulliDist (b, p) [utl] =b?p:Lp
Required:0 Op O 1 b boolean
This is the distribution for a single "Bernoulli trial", in whiphis the probability of an outcome labeled "success" occurting.
abooleant hat is true i f the fAsuccesso occuhegventoflhendsappearmg!| e i s I i
_BernoulliDist

This is a distribution that Netica uses internally to represent the Bernoulli distribB&amo(illiDist). If you get an error
message saying there was an erralwting _Bernoulli (k, p), where k and p are numbers, then your equation is supplying
illegal values, even if you never explicitly used _Bernoulli in your equation.

For instance, if your equation fbooleanB is P(B|x) =x/ 10 and valuesxftango up to 11, then _Bernoulli (1, 1.1) will be
il l egal, since you are supplying 1.1 as a probabislgiveh)y (and N

beta (z, w) = gamma (z) gamma (w) / gamma (v}
where: z>0 w>0

Returns the beta function pindw. BetaDist is the beta probability distribution, which is based on the beta function.

BetaDist (x, a, by [al =1 (1-%)"Y beta &, b)
Required: a >0 b >0

The beta distribution over x. Almost any reasonably smooth unimodal distribution on [0,1] can approximatediegseeney
a beta distribution (if its not on [0,1], sBeta4Dist).

Beta4Dist (X, a, b,c,d LAl = BetaDist ((x ¢) / (d- ¢), a, b)
Required:0 Ox O1 a >0 b >0

Alsoknownas t he AnGeneralized Beta Distributiono, this is a beta
nonzero values from = ¢ to x = d, instead of fronx=0 tox=1. This distribution has great flexibility to roughly fit
almost any smath, unimodal distribution with no tails (i.e., only nonzero over a finite range).

binomial (n, k) =n!/ (k! * (n-k)!)
Where: 0 Ok On n and k are integers

Returns the binomial coefficiem k). That is the number of differektsized groups that can be drawn from a set distinct
elements. See also thailtinomial function.

BinomialDist is the binomial probability diribution, which is based on the binomial coefficient.

BinomialDist (k, n, p) [utl] = binomial (n, k) g (1-p) ™
Required: k and n are integers , 00k On, and 0 Op O1

A "binomial experiment” is a series nfindependent trials, each with two possible outcomes (often labeled "success" and
"failure"), with a constant probability, of success. The total number of succedsas,given by the binomial distribution.

JAVA VERSION 4.18 NETICA API 97

If there are more than two possible outcomes, use the multinomial distriddtittmomialDist). If the sampling is
without replacement, use the hypergeometric distributitypérgeometricDist)

For largen, andp not too close to 0 or 1, the binomial dilsution can be approximated by a normal distributior(malDist)
with mean m =n p, and variance n p (1-p). For largen, andp close to 0, it can be approximated by a Poisson distribution
(PoissonDist) with parametet =np. AsnY B t h e simiting diggributidne(prdvidingr=constant in the normal
case, ang Y (hp=constant in the Poisson case).

CauchyDist (, m s) L&l =1/@s (1 +((n)/s)?)
Required: s > 0

Although realworld data rarely follows a Cauchy distribution, it is useful because of its unusualness. For example, although it is
symmetric aboum(which is therefore its median and mode), it doesn't have a mean (orceadn) because the appropriate
integrals don't converge. The C(0,1) distribution is also Student's t distribution with degrees of freedom = 1.

ChiSquareDist (x, n) [a] = XD [Texp (x/2) 2"? gamma (/2)]
Required: x 00 n >0 n is an integer

This is the distribution of ;> + Z,> +... Z,> where Z are independent standard normdbgmalDist) variates.

nis usually call ed théadstrifludoe.gr ees of freedomod of

clip (min, max, x) = (x < min) 2 min : (x> max) ? max : X

where min O max

Returnsx, unless it is less thamnin (in which case it returnsin), or more thamax (in which case it returnsax).
See also the functionsiin , max.

DiscUniformDist (k, a, b) Lath] =1/(b-a+1)
Required: a Ob k, a, b are integers

This distribution represents the situation wheilgas an equal probability of taking on any of the integer values drtob
inclusive (wherea andb are integers). Ik were continuous, then it would be a continuous uniform distribution.

eqnear (reldiff, x, y) =(IX-Y|/ max (| X[, |Y])
where reldiff oo

ReturnstrUEiff X is equal toy, within reldiff . To use a tiny builin value forreldiff ~ , suitable for numerical floating
point inaccuracy, usapprox_eq .

erf (x) -2 @Xexp (-t?) dt

R

wherex is an unrestricted real

This returns the error function gf It is useful for calculating integrals of the normal distribution functidorfnalDist).
If x is large, you can obtain better accuracy with c.

erfc (x) =17 erf(x)
wherex is an unrestricted real

This returns the complementary error functiox oflt is useful for calculating an integral of a tail of a normal distribution
function NormalDist). It would be easyr®ugh to just usé- erf(x), but this provides better numerical accuracy wken
is large (scerf(x) is very close to 1).

ExponentialDist (X,)| [al =1 exp ¢l x)
Required | >0

98 NETICA API JAVA VERSION 4.18

If events occur by a Poisson progaben the time between successive events is described by the exponential distribution (where
| is the average number of events per unit time).

ExtremeValueDist (X, a, b) [al = exp (exp ((x-a)/b) - (x-a)/b) /b
Required: b >0

This distribution is the limiting distribution for the smallest or largest values in large samples drawn from a variety of
distributions, including the normal distritbo ~ Also known as the "Fish&iippet distribution”, "FishefTippet Type |
distribution" or the "logWeibull distribution”.

FDist (X, ni, ny) L&l
Required: n >0 n,>0

The ratio of two chisquared variates pand X%, each divided by their degrees of freedomy/tix)/(X»/n,) follows an F
distribution. Also known a%Snedecor's F distribution", "Fish&nedecor distribution", fatio distribution" and " varianee
ratio distribution ".

factorial (n) =n(ni 1)(ni 2)..1
where nOO0 nis aninteger

Returns the factorial af, which is the product of the firstintegers.

factorial(n) is often written as!

factorial(0) = 1

Even fairly small values af (around 170) can causactorial to overflow. For that reason calculatiowith the factorial
function are often done using the logarithm of the results, for which you cédogisetorial

If nis not an integer you may want to use gfaenma function, which for integer values is related to factorial factorial
(n) =gamma(n + 1) but which is also defined for namteger values.

gamma (x)
where x00
Returns the gamma function of
The gamma function is normally defined for negative valuesasf well, but Netica cannot compute these.
Dondét conf us e GanmaBist,fthe gamina poobabilityi disthbution.

Even fairly small values of (around 170) can caugammato overflow. For that reason calculations with the gamma function
are often done using the logarithm of the results, for which you cdoggemma.

For integer values of, the gamma function is related to flaetorial functionby: factorial (n) =gamma(n + 1).
GammaDist (x, a, b) LAl =x*1e¥? | (gammad) b?)
Required: a >0 b >0

If events occur by a Poisson process, then the time required for the occurrareesnfs is described bydtgamma distribution
(whereb is the average time between events).

Fora = 1, this is the exponential distributioExponentialDist Ywithl =1/ b. Forb =2, this is the chsquare
distribution ChiSquareDist) with degrees of freedom=2 a.

Geometric Dist (k, p) [l =p (:pf
Required: 0<p 01 kis an integer

This distribution describes the number of Bernoulli trials (independent trials, with outcomed I@elzess" or “failure”, and
constant probabilitp of success) before the first success occurs (i.e., includes only the failure trials). An example would be the
number of coin flips resulting in tails before the first head is seen.

JAVA VERSION 4.18 NETICA API 99

Situations where Benulli trials are repeated until the nth success are called "negative binomial experiments"”, and the geometric
distribution is a special case of the negative binomial distribuNegBinomialDist) withn = 1.

HypergeometricDist (k, n, s, N) L] = binomial (s,k) binomial (N, rvk) / binomial (N,n)
Required: NOO 0 On ON 0O Os ON kN,n ands are integers

This provides the probability that there &résuccesses” in a random sample of sizeelected (Vthout replacement) frod
items of whichs are labeled "success" ahds labeled "failure".

It is used in place of the binomial distributidBirfomialDist) for situations which sample without replacement.

increasing (x 1, X 2,...X n) = (X < %) && (X2 < X3) && ... && (X g < Xn)
where x; are unrestrictedeal numbers

ReturnstruEiffeachx; i s greater than the previous ane.quallfsdoyowswi sh the
increasing_eq

increasing_eq (x 1, X 2,...X n) = (%0)& (X20)& ... && (X 1 O)X
where x; are unrestrictedeal numbers

ReturnstrRUE iff eachx; is greater than the previousone. dfy wi sh t he test t dncréngngj ust figreat el

LaplaceDist(x, m b) [al = (1/(2)) exp € |x-nib)
Required: b > 0

Its pdf is two exponential distributions spliced together Hadback. The difference beeen two iid exponential distribution
random variables follows a Laplace distribution. Also known as the "double exponential” distribution.

LogarithmicDist (k, p) [l = (p™k)/ (K log (p))
Required: O<p<1 k is an integer

Also known as the "logarithmic series distribution”.

lo gfactorial (n) =log (n (ni 1) (ni 2) ... 1)
where nOO0 nis aninteger

Returns the natural logarithm of the factoriahothat is: log if!).

You could also use thactorial function, but this helps to avoaverflow when n is large (>170).

If nis not an integer you may want to useltigggamma function, which for integer values is relatedagfactorial by:
logfactorial (n) = loggamma (n + 1) but which is also defined for neinteger values.

loggamma (x) = log (gamma (x))

where x O0
Returns the natural logarithm of tgemmafunction ofx.

It may be used to avoid overflow wheiis large. The gamma function is normally defined for negative valuesa®fvell, but
Netica cannot compute these.

LognormalDist (X, x, f) [a] =N(og (x),x,f) / x, where N is the fn
= (1/[xf sart(@)]) exp [(log(x) - x) /f]1*/ 2)
Required: f >0
The lognormal distributionesults when the I@githm of the random variable is described by a normal distribution
(NormalDist). This is often the case for a variable which is the product of a number of random variables (by the central limit

theorem). Noti ce t hat zeédhiraicafing thatthif is noothe Isaone as ahk logarghmrmofdhie nocnmlp i t al i
distribution.

100 NETICA API JAVA VERSION 4.18

max (X 1, X 2,...X n) =xs.t. (xO ;) forallj
where x; are unrestrictedeal numbers

Returns the maximum of;, X,, .

At least one argument must be passed. If you just want the index of the maximum (i.e. its position in thedigtharsse
See alsanin .

Example: max (-10, 6.6, 3.4, - 126, 3.4) returns 6.6

member (elem,s 1,S 2,...S n) =(elem==g9) || (elem==8 || ... || (elem ==.%
where elem and all $ must be the same type

ReturnstrRUE iff one of thes; arguments has the samaue aslem .. See alsonearest |, select

Examples: member (1, -6, 3,1, 3) returns TRUE
member (C, blue, red) and C =red returns TRUE
min (X 1,X 2,..X n) =x st (xO) forall |

where x; are unrestrictedeal numbers
Returns the minimum of;, X,, 6.
At least one argument must be passed.

If you just want the index of the minimum (i.e. its position in the list),argenin . See alsonax.

Example: min (10, 6.6, 3.4, 126, 3.4) returns 3.4
multinomial (n ,N 2,..N n) =+ mp+ ../ (nd *nyd* .. ny)
where n,O0 n; are integers

Returns the number of ways @m,+n,+ é) sized set of distinct elemts can be partitioned into sets of siwen ,, ¢é .. n
If partitioning into only two sets, this is the samebasmial

MultinomialDist (bc, n, k LP LK 2,p 2,...K mpP m [atl]
Required: n>=0 k>=0 O<=p<=1 sumpl=0 bc boolean n, k i integer

The multinomial distribution is a generalization of the binomial distribution to the situation where there are not justdwe®
(usually labeled "success" and "fail"), but ratheutcomes, eachaving probabilityp; (i=1..m), and we are interested in the
number ofoccurrencesf each outcomek(), given that a total of n trials are performed.

To create a multinomial distribution between kheandn nodes, first add to the net a new boolean ndtnis example called
bc. Then add links from the nodes of all the fiimed parameters (usually and allk;) to nodebc. At nodebc, put an
equation with MultinomialDist, and convert the equation to a table. Finally, givebwdefinding of true

Normally the sum op; is one, but Netica will just normalize tipg if that is not the case.
If mis 2, then kis deterministicallydetermined by k(i.e., k, = n- k;), and k is distributed by BinomialDist.

Each of the&k; separately has a binomiaktlibution with parameters n and pi, and because of the constraint that the sum of the
ki's isn, they are negatively correlated.

The Dirichlet distribution is the conjugate prior of the multinomial in Bayesiatistics.

For assistance on using this function, contact Nomysport@norsys.com

nearestO (val, x 0, X 1,...X n) =ist(val-x| O-x|) el) forall j
nearestl (val, x 1L, X 2,...X n)

where val andx; are unrestrictedeal numbers

mailto:support@norsys.com

JAVA VERSION 4.18 NETICA API 101

Returns the index (position in list) of the argument with the value closeat t¢as measured by the absolute value of the
differencg. If there are several with the same smallest difference, then the index of the first occurrence will be returned. The
first x argument has index O fiearest0 is used, or index 1 ihearestl is used.

Must be passed at least 2 argumewds (and arx). See alsomember

Example: nearestO (1, 1, 3.4, 1,3.4) returns 0
nearestl (5e3, -6.6, -3.4,126) returns 3
NegBinomialDist (k, n, p) [utl] = binomial (n+k1, k) &' (1-p)°

Required: 0 On 0<p O1 kandn areintegers

The negative binomial distribution is the distribution of the number of failures that occur in a sequence of trials before
successes have occurred, in a Bernoulli process (independent trials, with outcorads'tatoeess"” or "failure”, and constant
probabilityp of success).

The limit of a negative binomial distributionaa Y H1 -p) Y 0, n(1-p) Y |, is a Poisson distributionith
parametet .

If n=1, then this distribution is just the gednedistribution

NoisyAndDist(e,inh,b WP 1 b npn) Ll = Pee) = (tinh) product i=1 to n (b2 1: (+p)
Required: 00p O1 0 Oinh 01 e, b; boolean

Use this distribution when there are several possible requirements for an event, and each has a probability thaaiywig actu
necessary. Each of the necessary requirements must pass for the event to occur. Even then there iyydgivebatyinh)
that the event may not occur (mdkh zero to eliminate this).

Eachb; is abooleawariable, which whenRrue indicates a requirement passel.is also a boolean, which indicates whether th
event occurs. Each of tipe are the probability thdi; will be required to cause.

If inh is zero, and only one possible requiremelraisE, sayby, then the probability fore is 1- py. If more possible
requirements areaLsk, the probabiliy will be lower. And if inh is nonzero, the probability will be lower. Reducing;a
always results in the same or higiére) .

pican be considered t he fAeandbewithzeto ddicating indépendenee [(liaktcould be rdathyt we e n
and 1 indicating maximum effect. See algmsyOrDist

NoisyMaxDist(...) Lutlu]
NoisySumbDist(...) [a]
For document ati on, cont act Norsys to obtain the document tit
NoisyOrDist(e,leak,b LP 1,--D npn)] = P(e) = 1[(1-leak)product i=1 to n (b? (3-p): 1)]
Required: 00p O1 0 Oleak O1 e,b ; boolean

Use this distribution when there are several possible causes for an event, any of which can cause the event by Iiselthbut on
a certain probability. Also, the event can occur spaudasly (without any of the known causes being true), with probability
leak (make this zero if it candt occur spontaneously).

Each b; is abooleawariable, which may cause the event wherrise. e is also a boolean, which indicates whether the
event occurs. Each of thg; are the probability thae will occur if b; is TRUEIn isolation.

If leak is zero, and only one possible causerisg, say by, then the probability fore is py. If more possible causes are
TRUE, P(e) will be greater And if leak is nonzeroP(e) will be greater. Reducingmg always results in the same or lower
Pe).

pican be considered t he fAeandbewithzeto idicating indépendenee [(liaktcould be rdmeved) e e n
and 1 indicating mamum effect. See Pearl88, page 184 for more informatiorg(his 1 7 p;). See alstNoisyAndDist

Example: P (Effect | Causel, Cause2) = NoisyOrDist (Effect, 0.1, Causel, 0.2, Cause2, 0.4)

102 NETICA API JAVA VERSION 4.18

NormalDist (X, m s) L&l = [1/(s sqrt(2p))] exp ([(x-m/s]?/ 2)
Required: s >0

The normal (Gaussian) distribution of ma®and standard deviatic

The normal distribution, or approximations of it, arise frequently in natureiftipartly explained by treentral limit theorem
Since it also has many convenient mathematical properties it is the most commonly used continuous distribution.

For this distribution, 68.2% of the probability is within 1 standard deviation of the,8at% is within 2 standard deviations,
and 99.74% is within 3 standard deviations.

fm=0ands= 1, it is known as a fistandard normal 6 distribution.

ParetoDist (X, a, b) [a] = (a/b) (b/X) * (a+1)
Required: a >0 b>0

The Pareto distribution is a power law probability distribution found in a large number-efaddlsituations, such as the
distribution of wealth among individuals, frequencies of words, size of particles, size of towns/cities, areas burnhfinedpres
size of some fractal features etc. These are situations where there are many that are small and a few that ar&éaRgadtike t
principle, in which 20% of the population owns 80% of the wealth).

For any value of a, the distribution is "scéie€', which means that no matter what range of x one looks at, the proportion of
small to large events is the same (i.e., the slope of the curve on any section ofdigeplog is the same).

PoissonDist (K, m [utl] = % e”

Required: k O 0 m >0 k is an integer

If events occur by a Poisson process, then the number of events that odixedrtiene interval is described by the Poisson
distribution (wheremis the average number of events per unit time).

round (x) = floor (x + 1/2)
where x is an unrestricted real

Roundsx to the nearest integer. To round wmffother quantities, ugeundto

roundto (dx, x) = dx * floor ((x + dx/2) / dx)
where dx >0

Roundsx to the nearedgdx, which may be less than or greater than 1.

For exampleroundto(10,17) rounds 17 to the nearest 10daso it returns 20.

If dx =1, then this is the same as tloeind function.

selectO (index, x 0, X 1, ... X n) = x s.t. i == index
selectl (index, x 1, X 2,...X n)
where index is integer, Xx; are a |l the same type
select0: 0 O index<n
selectl: 1 Oindex On

Returns the value of theargument at positiomdex : Xingex
The firstx argument is at index O ifelect0 is used, and at index 1 #electl is used.
Must be passed at least 2 aments index and anx). See alsomember

Example: selectO (1, - 6.6, 3.4, 1.26, 3.4) returns 3.4
selectl (1, - 6.6, 3.4, 1.26) returns 16.6

JAVA VERSION 4.18 NETICA API 103

sign (x) =(x>0)?1:(x<0)?L:0
where X is an unrestricted real

Reurns 1 ifx is positive,-1 if x is negative, and 0 ¥ is zero. See also:abs

SingleDist (k, ¢) [atl] =(k==¢)?1:0
Required: k and c are integers

The single point disiioution indicates thdt = c. The probability thak is any other value is 0. This is the discrete version of a
Dirac delta.

StudentTDist (X, n Lal =G (n+ 13/ D) G/n/[2)2 /O+n +1) / 2)
Required: n >0

The tdistribution or Student'sdistribution arises in the problem of estimating the mean of a normally distributed population
when the sample size is small.

TriangularDist (x, m, w) [a] =(x-a]>w)?20: (w|x-a])/w
Required: w>0

The graph of this distribution has a triangular shape, with the highest pristatand nonzero values only from- w toa +
W.

Triangular3Dist (X, m, w 1, W 2) [al
Required: w>=0 w,>=0 w; &w, can't both be 0

The pdf has a triangular shape, with the highest poitai, and nonzero value from - w; to m + ws.

TriangularEnd3Dist (x, m, a, b) [al
Required: a<=m b>=m b>a

The pdf has a triangular shape, with the highest poitai, and nonzero value fromto b.

UniformDist (x, a, b) Lal =1/ (b-a)
Required: a<b

This is the distribution to use when the minimum and maximum possible values faal@erare known, but within that range
there is no knowledge of which value is more likely than another. It has a constant value$rano x = b, and zero value
outside this range.

WeibullDist (x, a, b) [al = (a/b) (x/b)** exp ((x/b)?)
Required: a >0 b >0

The Weibull distribution is often used for reliability models, since if the failure rate of an item (ieanpef the remaining ones
which fail, as a function of time) is given a&(t) = r t 1, then the distribution of item lifetimes is given by the Weibull
distribution withr = a/ b?.

xor(b 1,b 2 ...b n) = odd (NumberTrue (b, ... b))
where b; are boolean
Returns the exclusiver ofb;, b, é b,.

This is also known as the parity function, and will return true iff an odd numlerenfaluate to true. See alsand, or , not .

104 NETICA API JAVA VERSION 4.18

12 Bibliography

Russel] Stuart and Petéforvig (1995) Artificial Intelligence: A Modern ApproagHPrentice Hall

Pear| Judea (198) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference
Morgan KaufmannSan Mateo, CA

Lauritzen, Steffen L. and David J. Spiegelhaltei88)9'Local computations with probabilities on
graphical structures and their application to expert systends'Royal Statistics Society, B
50(2),157%194.

Cowell, Robert G., Dawid, A.P. et al (199Bjobabilistic Networksend Expert SystemSpringerVerlag

Spiegelhalte David J., Philip Dawid, et all (B8) Bdyesian analysis in expert systénis Statistical
Science8(3), 219283

Neapolitan Richard E. (204) Learning Bayesian NetworkBearson Education, Inctéhtice Hall

Korb, Kevin and Ann ENicholson(2004) Bayesian Artificial IntelligenceChapman & Hall/CRC

ShachterRoss D. (186) Evaluating influence diagramé OperationdResearch34(6), 871882

Shachter, Ross D. (1988) "DAVID: Influence diam processing system for the Macintosh" in
Uncertainty in Artificial Intelligence 2John F. Lemmer and L. N. Kanal (Eds.), Neblland,
Amsterdam.

Shachter Ross D. (189 Evidence absorption and propagation through evidence reversals
Uncertainty in Artificial Intelligence 198803308

JAVA VERSION 4.18

NETICA API 105

13 Functions by Category

System

Environ
Environ

Environ
Environ
Environ
Environ
Environ

constructor
finalize

g/setArgumentChecking

Initializes the Netica system

Signals an end to using Netica systexmd frees all possible resources
(e.g. memory, close any open files)

Adjusts the amount that Netica functions check their arguments

getVersion/getVersionStringsets the software version of Netica currently running

g/setMemoryUsageLimit
g/setCaseFileDelimChar
g/setMissingDataChar

Error Handling

NeticaError
NeticaError
NeticaError
NeticaError
Environ

getMessage
isinCategory
getSeverity
getldNumber
g/setArgumentChecking

File Operations

Streamer
Streamer
Streamer
Streamer
Environ
Environ
Net

Net

Net

Net
Caseset
Caseset
Net

Net

constructor

constructor

finalize

setPassword
g/setCaseFileDelimChar
g/setMissingDataChar
write

constructor
writeFindings
readFindings
writeCases

addCases
reviseCPTsByCaseFile
getFileName

Adjusts the amount of memory that Netica can allocatéafues
The symbol to separate data fields in case files created by Netica
The symbol indicating missing data in case files created by Netica

Returns an error message for the given error report

Indicates the nature of the error (out of memory, tuhretc.)
Returns the severity level of the given error report

Returns the error number of the given error report

Adjusts the amount that Netica functions check their arguments

Creates a stream for the file with the given name

Creates a stream for reading and writing to buffers in memory
Closes files, frees resources and deletes either type of stream
Sets a password to readwrite encrypted files

The symbol to separate data fields in case files created by Netica
The symbol indicating missing data in case files created by Netica
Saves a net to a file

Reads a net from a file

Saves a net's current set of findings to a file

Reads findings from a file, and enters into a net

Writes all the cases to a file in CSV or UVF format

Makes the caseet object consist of the cases located in the file
Reads a file of cases to revise probabilities

Name of file (with full path}that net wasast written to or read from

106

NETICA API JAVA VERSION 4.18

Findings (Evidence)

Node finding().enterState
Node finding().enterStateNot
Node finding().enterReal
Node finding().enterLikelihood
Node finding().enterGaussian
Node finding().enterInterval
Node finding() .setState

Node finding().setReal

Node finding().getState
Node finding().getReal

Node finding().getLikelihood
Node finding().geKind

Node finding().clear

Net retractFindings

Net getFindingsProbability
Compiling

Net compile

Net uncompile

Net sizeCompiled

Net reportJunctionTree
Net g/setElimOrder

Net g/setAutoUpdate

Node equationToTable

Enters a discrete finding that a node is in a given state

Enters a discrete finding thanhade is not in a given state
Enters a real number finding for a continuous node

Enters a likelihood finding for a nodee. a soft finding)

Enters a finding given by adsissian (normal) distribution
Enters a finding uniform over an interval, zero outside

Enters a discrete finding, overriding any previous entry

Enters a real number finding, oveiirig any previous entry
Returns the finding for a node, if there is one

Returns the real number finding entered for a continuous node
Returns the accumulated findings for a node klselihood vector
Returns what kind of finding was entered

Retracts all findings for a single node

Retracts all findings (i.e. the current case) from a net

Returrs the joint probability of the findings entered so far

Compiles a net for fast belief updating

Releases the resources (e.g., memory) used by a compiled net
The size and speed of the compiled net (i.e. of the junction tree)
Returns a string describing the internal compiled junction tree
The node order used to guide compilation
Automaticallypropagate beliefs when findings are entered
Builds the CPTfor a node basedn the equation given to it

Belief Updating and Inference

Node
Node
Node
Node

Net
Net
Net
Net

Net
Net

Sensitivity
Sensitivty

Node

Node

getBeliefs
getExpectedValue
getExpectedUtils
isBelieflUpdated

g/setAutoUpdate
getJointProbability
getFindingsProbability
getMostProbableConfig

generateRandomCase
absorbNodes

getMutuallnfo
getVarianceOfReal

calcState

calcValue

Returns a node's current beliefs, doing belief updating if necessary
Expected value (and std dev) of a continuous or nurvaticed node
Returns the expected utility of each choice in a decision node

Returns whether a node's beliefs have already been calculated to
account for current findings

Automatically propagate beliefs when findings are entered

Returns a specified joint probability, given thediimgs entered

Returns the joint probability of the findings entered so far

Finds the state for each node which results in the most probable
explanation (MPE)

Creates a case sampledm the net, given the current findings

Removes the given nodes while maintaining the joint distribution of the
remaining nodes

Measures the mutual information between two nodes

Measires how much a finding at one node is expected to reduce the
variance of another node

Returns the state of a node calculated from its neighbors, if that can be
done deterministically

Returns the numeric value of a node calted from its neighbors, if

that can be done deterministically

JAVA VERSION 4.18

NETICA API 107

Learning From Data

Net reviseCPTsByCaseFile
Net reviseCPTsByFindigs
Learner constructor
Learner finalize

Learner learnCPTs
Learner g/setMaxlterations
Learner g/setMaxTolerance
Node fadeCPTable
Node getCPTable

Node getExperTable
Node setCPTable

Node setExperTable
Decision Nets

Node getExpectedUtils
Node setKind

Node Lists

NodeList constructor
NodeList add

NodeList remove

NodeList set

NodeList getNode
NodeList indexOf

NodeList size

NodelList copy constructor
NodeList clear

NodeList finalize

Net getNode

Net getNodes

Node getParents

Node getChildren

Node getRelatedNodes
Net getRelatedNodes
NodeList mapStateList

Cases (Sets of Findings)

(see also "Findings")

Net
Net
Net
Net
Net

writeFindings

readFindings
retractFindings

getFindingsProbability
reviseCPTsByFindings

Reads a file of cases to revise each node's probabilities

Uses the current case to revise probabilities

Creates a new object for use in learning CPTs from case data
Deletes a learning object (learner)

Learn CPTs from case data, with choice of algorithm

The maximum number of learnirgdep iterations (i.e., complete passes
through the data) which will be doménenthelearner is used

The minimum change in data log likelihood between consecutive
passes thugh the data, as a termination condition

Adjusts a node's probabilities for a changing world

Returns the results of learning

Determines how much experience was involved in the learning
Directly sets the probabilities (or starts them off)

Manually sets the amount of experience (or starts it off)

Returns the expected utjliof each choice in a decision node
Used to create decision nodes and utility nodes

Creates a new (empty) list of nodes

Inserts a nodat the given position of a list, making it one longer
Removes the node at the given index of a list, making it one shorter
Sets the Nth node of a list to a given node without changing length
Returns the Nth rade of a list (the first node is numbered 0)

Returns the position (index) of a node in a list; Joif it is not present
Returns the number of nodes in a list

Duplicates a list of nodes

Empties a node list without releasing the memory it uses

Frees the memory used by a list of nodes

Returns the node with the given name

Returns a lisof all the nodes ithe net

Returns a list bthe parents of a node

Returns a list of the children of a node

Finds all the nodes that bear a given relationship (sucha@mBected,
Markov blanket, ancestors, children, etc.) with a given node

Finds the nodes that bear a givetationshipwith a givenset ofnodes
Change the order of a list of states to match a given node list

To enter a case into a net, and to read it out

Saves a net's current set of findings to a file

Reads findings from a file, and enters into a net

Retracts all findings (i.e. the current case) from a net
Returns the joint probability of the findings entered so far
The current case is used to revise each node's probabilities

108

NETICA API JAVA VERSION 4.18

Net
Learner
Net
Caseset
Caseset
Caseset
Caseset
Caseset
NetTester
NodeList

reviseCPTsByCaseFile
learnCPTs
generateRandomCase
constructor

finalize

addCases

addCases

writeCases
testWithCaseset
mapStateList

Reads a file of cases to revise probabilities

Learn CPTs from cas#atg with choice of algorithm

Generates a random case in a net, according to the net's distribution
Creates a new caset objeg initially with no cases

Deletes and frees all resources used by aseatsebject

Searches the given database, adding cases to-aatasgect

Addsthe cases located in tigiven casdile

Writes all the cases in the given cast to a file stream

Performance testsBayesnet with a set of cases

Change the order of a list of states to match a given node list

Sensitivity to Findings (Utility -Free Value of Information)

Sensitivity
Sensitivity
Sensitivity
Sensitivity

Performance Testing a Net

NetTester
NetTester
NetTester

NetTester
NetTester
NetTester
NetTester

constructor

finalize
getVarianceOfReal
getMutuallnfo

constructor
finalize
testWithCaseset

getConfusion
getErrorRate
getLoglLoss
getQuadraticLoss

Database Connectivity

DatabaseManager CONStructor
DatabaseManager finalize
DatabaseManager insertFindings

Casese

addCases

DatabaseManager execute Sq|
DatabaseManager addNodes

High-Level Net Modification

Creates an object to measure sensitivity

Deletes the sensitivity measuring object

Measure the expected reduction in variance due to a finding
Measure the mutual information (entropy reduction)

Creates a new tester object, for given tests on given nodes
Deletes a tester object

Reads the cases chg-one, and for eacih does inference and grades
the Netica net, gathering statistics

Returns a confusion matrix result of the testing

Returns the error rate result of the testing

Returns the logarithmic logesult of the testing

Returns the quadratic loss result of the testing

Creates a new database manager object for a given slataba

Closes connection and deletes a database manager object
Addscurrent findingswithin the net into the databaseasew record
Adds the cases (or a subset) in the lolaée to a casset object

Executes arbitrary SQL commands on the database

Adds to the given net nodes that match the variables in the database

See alsiondgLefmaom Dat abo

Node
Net

Node
Node

Net
Net
Net
Net

reverseLink
absorbNodes
equationToTable
switchParent

duplicateNodes
copy constructor
undoLastOperation
redoOperation

Reverses a single link while maintaining joint probability

Absorbs out (sum or max) some net nodes

Builds a nodedés CPT or function
Switchesa link that comes from some node to come from a different
node, without changing the child node or its tables

Duplicates each node in a list, putting them in the same or a new net
Duplicates a whole net (with optiont skip tables, etc.)

Undoes the last operation done to a net

Call this to redo an operation that was undone

t abl

JAVA VERSION 4.18 NETICA API 109

Low-Level Net Modification

See also AEquaNDBassidyYi $iTalb|densd pA lhsyedr Data Fi el dso

Net constructor Creates a new empty net

Net finalize Frees all memory used by a net and all its substructures

Net setName Changes the name of the net

Net setAutoUpdate Changes whether a node doebdf@ipdating immediately

Net setElimOrder Provides the elimination order to be used for the next compilation

Net setTitle Sets the string used to title a net

Net setComment Attaches a comment string to the net

Net addListener Attaches a callback for wherodes get created, removed, etc.

Node constructor Creates a new node for a given net

Node delete Removes a node from its net, and frees the memory it required

Net duplicateNodes Duplicates each node in a list, puttithgm in same or new net

DatabaseManager addNodes Adds toagiven net nodes that match the variables in the database

Node setName Changes the name of a node

Node setTitle Sets the string used to title a node

Node setComment Attaches a comment string tioe node

Node setKind Changes whether the node is a nature, decision, utility, etc. node

Node setStateNames Names all the states of a node at once with a cora@iémited string

Node state()setName Provides a name for a state of thel@o

Node state()setTitle Sesthe title of a state of the node

Node state()setComment Attachesa comment to the state of a node

Node state().setNumeric Sets aeal numter for a state of a discrete node

Node setLevels Setsthreshold numbestfor continuous / discrete conversion

Node addStates Insersone or more states into a nodeds |

Node state().delete Remove a state from a node

Node reorderStates Changest he order of a nodebs states

Node addLink Adds a link from one node to another

Node deleteLink Renoves a link from one node to another

Node switchParent Switches a link that comes from some node to come from a different
node, without changing the child node artibles

Node setinputName Sets the ling name (to be used by the child node in its equation)

Node addListener Attaches a callback for when nodes get created, removed, etc.

Retrieving Net Information

See al so AEquaND-8e#&eVd sfuTad b, DA &s@pfl thsyedr Dat a Fi el dso

Net getName Returns the name of the net

Net getTitle Returns the string which is the net's title

Net getComment Returns the comment associated with the net

Net getNodes Returns a list of all the nodes in a net

Net getNode Returns the node having the given name from the net

Net getFileName Name of file (with full path}hat net wasast written to or rad from

Net getAutoUpdate Returns whether the net does belief updating immediately

Net getElimOrder Returns a list of the elimination order used for compiling
(triangulation)

Environ getNthNet Can be used to return all the nets in the Nefimaron, oneby-one

Node getNet Returns the net containing the given node

Node getName Returns the name of the given node

Node getTitle Returns the string titling the node

110

NETICA API JAVA VERSION 4.18

Node getComment

Node getType

Node getKind

Node getNumStates
Node state()getName
Node state()getindex
Node state()getTitle

Node state()getComment
Node state().getNumeric
Node getLevels

Node getinputindex

Node getParents

Node getChildren

Node isRelated

Node getRelatedNodes
Net getRelatedNodes
Equations

Node g/setEquation

Node equationToTable
Node g/setinputName
Node calcState

Node calcValue

Tables

Node g/setCPTable

Node g/setExperTable
Node o/setStéeFuncTable
Node o/setRealFuncTable
Node deleteTables

Node hasTable

Node isDeterministic
NodeList mapStateList

Node equationToTable
Learner learnCPB

Net reviseCPTsByFindings
Net reviseCPTsByCaseFile
Node fadeCPTable
Node-Sets

Node addToNodeset
Node removeFromNodeset

Returns a comment string for the node

Returns whether the node is for a discrete or continuous variable
Returns whether the node is a nature, decision, utility, etc. node
Returns the number of states node can take on

Returns the name of the given state

Returns the state number of the state with the given name
Returns the title of the given state

Returns the comment of the given state

Returns theeal number associated with a state of a discrete node
Returngthreshold numbearfor continuous / discrete conversion
Returns the parent index of the link with the given name

Returns a node list of the parents of the node

Returns a node list of the children of the node

Checks if a node hasgivengraphicalrelationship (such as-D
connected, Markov blanket, ancestors, children, etc.) witthernode
Finds all the nodes that bear a givelationship with a given node
Finds the nodes that bear a givetationshipwith a givensetof nodes

Set a nodeds equation (expressing
of its parent nodes)

Builds the nodeds function or
Definesanamefaa | ink (to be used by

theparent nodé same)

Calculates, if possible, the state of a node, barets aleterministic
equation or table, and findings at its neighbor nodes

Calculates, if possible, the numerical value of a node, based on its
deterministic equation or table, and findings at its neighbor nodes

The conditional probability of the node given its pafenglues
Experienceguantities indicating how much data was used to learn each
row of the CPTable

Function table of a discrete deterministic node

Function table of a continuous deterministic node

Removes a node's function, probability, and experience tables
Whether the node has a CRible or function table

Discovers if the node is a deterministic function of its parents
Useful for getting states in correct order to access a table
Buildstable from equation

Performs learning of CPT tables from data

Modify CPTs by learning from a single case

Modify CPTs by learning from cases

Increase uncertainty in CPT table to account for passage of time

Adds the given node to the naedet of the given name
Removes the given node from the nadé of the given name

CPT
t he

JAVA VERSION 4.18 NETICA API 111

Node isinNodeset Returns whther the given node is a member of the given rsmte
Net getAll Nodesets Returns a list of all nodsets defined for this net, in priority order
Net reorderNodesets Reorders the nodeets as requested, for priority during display
Net g/setNodesetColor Gets or sts the color used to display nodes of a given +saie
Visual Display

See also the NetPanel and NodePanel classes.

Node visual() g/setStyle The style to draw the node in Netica Application

Node visual() g/setPosition The coodinates of the center of the node in the Netica Application

User Data Fields

These are also all repeated for the Net object:

Node user().g/sélumber Attachesa namedfield numberto thenode that gets saved to file

Node user().g/sedtring Attachesa namedield stringto thenode, that gets saved to file

Node user().g/setObject Attachesa namedield Serializableobjectto thenode, that gets saved
to file

Node user().g/sdytes Attachesa ramedfield blobto thenode, that gets saved to file

Node user().removeField Removes one of the named fields of the node

Node user().getNthFieldName Retrieves fieleby-field info fromthenode by index

Node user().g/setReference Attachesa single arbitrarglata objecto the nodd€not saved to file)

112 NETICA API

JAVA VERSION 4.18

14 Index

Symbols

for state index 37

*in case file- 37

*in UVF file - 45

?in case file 37

[a,b] in UVF file - 43

_Bernoulli Function (egn function)96
{ & }n UVFfile - 43, 44

~{é} in MAUK file
~>[CASE-1]->~ - 37

+- in UVF file - 42

> in UVF file - 43, 45

A

absorbNodes() Net65
Access, Microsoft 40
accuracy of net 56
adaptive learning 55
addCases() Casese7, 40, 41
inuse- 41, 57
addLink() Node- 30, 60
in use- 62, 68
addListener() Net and Noddl7
addNodes()
DatabaseManager41
address of Norsys2
addStates() Node60
agent modeling 60
ancestor nodes
found by getRelatedNodes()79
announcement list13
append, passed totgelatedNodes() 79
approx_eq (eqn function)95
arc-See al so Ol
argmaxO (egn function)95
argmaxl1 (egn function)95
argminO (egn function) 96
argminl (egn function) 96
asterisk 37
attributevalue- 37

nko

autoupdating- 35

B

Bayes net 6
adaptive- 55
learning- 46
Bayes net libraries61
Bayes net online library14, 27
Bayesian network 6, 20
BBN - 20
belief- 21
belief functions 49
belief network- 6, 20
belief updating 21, 22, 25
functions available 106
belief vector- 36
Bemoulli distribution (egn function) 96
BernoulliDist (egn function) 96
beta (eqn function) 96
beta distribution (egn function)96
beta function 50
Beta4Dist (eqn function)96
BetaDist (egn function) 96
bin directory- 11
binary net files 32
binomial (egn function) 96
binomial distribution (eqn function)96
binomial experiment 97
BinomialDist (egn function) 96
BN - 20
BreastCancer.cas filel0
BreastCancer.dne file10
bug report email addres4.3
building Bayes nets20
BuildNet.java file- 10
built-in constants for equation®2
built-in functions for equations92
built-in operators for equation®92

JAVA VERSION 4.18

NETICA API 113

C

C#-6
calcState() 84
calcValue()- 84
case 36

identification number- 37
case file- 36

comments: 37

creating- 36

exanple - 38

format - 37

uncertain findings in 42
CASE-1 in case file 37
cases

functions available 107
caseset- 40
Caseset class40, 107
Caseset() constructod0

in use- 41, 57
Cauchy distribution (egn function)97
CauchyDist (egn function)97
causal network 20
chance node 67
ChestClinic example net

diagram- 23

DNET file 31
ChestClinic.cas file 10
ChestClinic.dne file 10
ChestClinic_WithVisuals.dne file10
chi square distribution (egn function®7
child nodes 21
children, foun by getRelatedNodes{()79
ChiSquareDist (egn function)97
classification- 7, 46
ClassifyData.java file 10
clear() Node Value

in use- 35
clip (egn function} 97
clique tree 22
Cobol- 6
combining nets 60
comments 29
compile() Net 24

inuse - 23, 38
compile.bat file- 10
compiling

functions available 106
compiling vs. node absorptior5
complete uncertainty in UVF file45
conditionals in equation87
confidence 49
confusion matrix 57
conjugate gradient descert9
connected node

found by getRelatedNodes()79
connecting with a databasd0
consistent findings 35
constant node 90
constant node as parameter in equatigé
context node 64
continuous variable

in case file 39
undiscretized 22
copyNodes() Net
in use- &
copyright notice 2
counting learning 47
counting learning algorithm50
creationof-node callback - 18
CSV file- 36

D

d_connected, passed to getRelatedNode&q)
database

connecting to 40

extracting cases from40

of cases 36
database conngeity

functions available 108
Database Manager clas$08
DatabaseManager() constructetO

inuse- 41
DBNs- 7
decision analysis 7
decision net 6, 67

solving by node absorption66
decision nets

functions available 107
decision node 67
delete() Node 60
delete() Node State60
deleteLink() Node 60
deleteTables() Node

in use- 52
deletionof-node callback - 18
Delphi- 6
demo directory 11
Demo program, runningl11
Demo.java file- 10
DempsterShafer- 49
dependence

degree of- 81

finding- 79
descendent nodes

found by getRelatedNodes()79
deterministic equation85
deterministic propagation84
diagnosis 7, 46

most informative test 82
directory structure of distrol1l
Dirichlet distribution- 50
Dirichlet distribution (eqrfunction)- 100
disclaimer- 2
disconnected link 62
discretization

avoiding- 84
DiscUniformDist (egn function) 97
display of nodes 61
DNET file

format - 14
DNET file - 27, 31

114 NETICA API

JAVA VERSION 4.18

DNET_File_Format.txt file 14

docs directory 11

Dolnference.java exangprogram 23
Dolnference.java file 10

double exponential (egn function®9
Drawing Balls example 49

drawing nodes and net§2
DrawNet.java example prograny?2
DrawNet.java file- 10

duplicate()- 62

duplicationof-node callback - 18
dynamic Bags nets 7

E

Eclipse development systemi2
efficiency- 22
elimination order 22
EM learning- 54
algorithm- 49
when to use 47
EM_LEARNING
in use- 54
email address 6
embedded systems&
encrypting Bayes net32
entering findings 35
enterLikelhood() Node Value
in use- 35
enterState() Node Value25
in use- 23, 35
enterStateNot() Node Value
in use- 35
Environ class 105
Environ() constructor9, 24
in use- 23
egnear (egn function)97
equation- 84
built-in constants 92
built-in functions- 92
built-in operators- 92
comparison with Java/C86
conditional statements 87
constant node as parameter90
deterministic- 85
examples 84, 91
input names 89
left-hand side 85
link names 89
probabilistic- 85
referring to discretestates- 89
right-hand side 86
syntax- 85
tips- 90
using to build table 88
equations
functions available 110
equationToTable() 84, 88
erf (eqn function) 97
erfc (eqn function) 97
error handling

functions available 105
error rate 57
ERROR ERR- 18
ess: 50
estimated sample siz&0
event handling 17
evidenceSee al so
functions available 106
example Bayes net27
example DNET file 31
example program
building decision net 68
displaying a Bayes net graphically2
Doinference.java 23
DrawNet.java 72
entering findings 35
LearnCPTs.javeb2
learning probabilities 52
MakeDecision.java68
NetTester.java 57
node library- 62
probabilistic inference 22
SimulateCases.jave38
solving decision problem68
exanples directory 11
exception handling 18
exclude_self, passed to getRelatedNodes9)
executeSQL() DatabaseManagdrl
exhaustive 29
experience 50
explaining away 25
exponential distribution (eqn functionp7
ExponentialDist (egn function®7
extreme value distribution (egn functiond8
ExtremeValueDist (egn function)98

6findingsé

F

factorial (egn function) 98
fadeCPTable() Node55
fading- 55
FDist (eqn function) 98
F-distribution (egn function) 98
feature list 7
file format

case file 37

DNE Bayes netl4
file operations

functions available 105
files provided in distro 10
finalize() - 19
finalize() Caseset40
finalize() Environ

in use- 23
finalize() Net

in use- 23, 38, 68
finalize() Sensitivity- 82
finalizers- 19
finding - 21

consistency 35

entering- 35

JAVA VERSION 4.18

NETICA API

likelihood- 34

negative- 34

positive- 34

sets of- 36

soft- 34
findings node 64
FIRST_CASE

in use- 52

FisherSnedecor distribution (egn function)8

FisherTippet distribution (egn function)98
Flow Instrumat example 61

for n/ N conditions 87 no

formula- 84

Fortran- 6

forward sampling 22

F-ratio distribution (egn function)98
frequency of cases37

functionality- 7

fuzzy logic- 49

getString() User 80
getVarianceOfReal() Sensitivity82
gradient descent learning
algorithm- 49
when to use 47
graph algrithms- 79
graphical model 6, 20
graphical user interface6

115

H
ning message
Hugin - 12

hypergeometric distribution (egn functiond9
HypergeometricDist (egn functionP9

G

gamma (egn function)98
gamma distributiorfeqn function) 98
GammabDist (eqn function)98
Gaussian in UVF file 42
generateRandomCase() N&2, 83, 84
in use- 38
geometric distribution (egn functionp8
GeometricDist (eqn function)98
getBelief() Node 25
in use- 23
getBeliefs() Noé
in use- 35
getBytes() User 80
getConfusion() NetTester57

in use- 57
getErrorRate() NetTeste57
in use- 57
getExpectedUtils() Node70
in use- 68
getinputindex() Node
in use- 63
getLikelihood() Node Value
in use- 35
getLogLoss() Net@ster- 57
in use- 57

getMutualinfo() Sensitivity 82
getNodes() Net

in use- 38, 52
getNthFieldName() User80, 81
getNumber() User80
getObject() User 80
getQuadraticLoss() NetTesteb7
getReference() User80
getRelatedNodes() for a gm of nodes 80
getRelatedNodes() Node&79
getState() Node Value36

in use- 35
getStateFuncTable() Nod&0

in use- 68

IDE installation- 12
ideas for improvement13
IDname:- 29

IDnum - 37

ignorance 49

include_evidence_nodes, passed to getRelatedNodéS()

increasing (egn function)99
increasing_eq (egn functionp9
independence

degree of- 81

finding- 79
independent finding 34
inference

functions available 106
influence diagram 6, 67
influence, degree of 81
inheriting from Node or Net 16
input names in equatior89
input/output done by Netica API7
insertFindings() DatabaseManagerl
installing Netical - 11
Instrument example61
intersection, passed to getRelatedNodeg9
interval in UVF file - 43
isRelated() Node 80

J

Java: 6
Java version requiredl1
javadocs 10, 12
join tree-
junction tree 22
versus node absorption22

K

knowledge base20

116 NETICA API JAVA VERSION 4.18

L M
Laplace distribution (egn function)@9 Macintosh- 7
LaplaceDist (egn function)® MakeDecision.java example prograr68
large nets MakeDecision.java file 10

too big to compile 22 markov blanket 79
latent variable 47 markov_blanket, passed to getRelatedNodeg9)
layout of nodes 61 Matlab - 6
learnCPTs() Learner54 max (egn function) 100

inuse- 41, 54 maximizing expectedtility - 67
LearnCPTs.java example progrars2 maximum likelihood learning 48
LearnCPTs.java file 10 medical domain 20, 22
Learner class 107 member (eqn function)100
Learner() constructor54 memory required 22

inuse- 41 min (eqgn function) 100
learning missing data 37, 47, 50

adapive - 55 missing state, reading casg&7

Bayes nets 46 modeling agents 60

modifying nets 60

most informaive test- 82

MS Access 40

MS SQL Server 40

MS Windows: 7

multinomial (egn function) 100
multinomial distribution (eqn function)100
MultinomialDist (egn function) 100
multiplicity of cases 37
multithreading: 7, 17

mutual information 82

mutually exclusive 29

from cases 46
parameter- 46
structure - 46
learning algorithms 47
learning from data
functions available 107
learning nodes 47
LearnLatent.cas file 10
LearnLatent.java file 10
left-hand side of equation85
legal distaimer- 2
libNeticaJd.jnilib- 10

libNetical.so 10 MySQL database 40
libraries
Bayes net 20, 61 N
node- 61
license agreement9
License Agreement.pdf file9, 10 NAME_MAX General- 29
license for other language® names 29
license password9 native objects and code - 17
likelihood nature node 67
in case file 47 nearestO (egn function)100
in UVF file 44 nearestl (eqn function)100
likelihood finding- 34,See al so 6soft f i ndiegatygbinomial distribution (eqn functionl0l
not independent: 35 negative finding 34
likelihood vector- 35 negative likelihood in UVF file 45
link NegBinomialDist (eqn function)101
adding- 30 Net class 106, 108, 109
link name- 62 net library- 14
in equation- 89 net reduction 64
links - 21 Net() constructor 24, 29
Linux - 7 for new library- 62
Lisp- 6 in use- 23, 62, 68
lists of nodes 77 in use to read file 63
log likelihood during learning 48 Net.java file- 10
logarithmic distribution (egn funti) - 99 NETA file format- 32
logarithmic loss 57 Net_Ex.java file- 10, 16
logarithmic series distribution (eqn functiony9 Netica API- 6
LogarithmicDist (egn function) 99 Netica Application 6, 14, 27
logfactorial (eqn function) 99 transferring info- 81
loggamma (eqn function)99 website- 14
lognormal distribution (egn function)99 Netica.dll- 10
LognormalDist (eqn function)9 NeticaError class 105

log-Weibull distribution (egn function) 98 NeticaEx- 15

JAVA VERSION 4.18

NETICA API 117

NeticaException class18
NeticaJ- 6
NeticaJ.dll- 10
Neticald.jar 10
NeticaJ_Man.pdf file 10
NetPanel() constructor

in use- 72
NetTester class108
NetTester() constructers6

in use- 57
NetTester.java example progrard7
NetViewer.java file- 10
neural networks 49
NEXT_CASE

in use- 52
NO_MORE_CASES

in use- 52
node- 21
node absorption64, 65
Node class 109, 110
node library

example program 62
node library- 61
node lists 77

functions available 107
Node() constructor29, 60

in use- 62, 68
Node.java file- 10
setPosition() Node VisualNodes1
setStyle] Node VisualNode 61
NodeEx.java file 10
NodeEx.java file 16
NodelList class 107
Nodelist.java file- 10
NodelListEx.java file 10, 16
NodePanel class72
nodeset functions 110
nodesets

functions available 110
noisy-and distribution (eqgn fustion) - 101
NoisyAndDist (egn function) 101
noisy-max distribution (egn function)101
NoisyMaxDist (egn function) 101
noisy-or distribution (egn function) 101
NoisyOrDist (egn function) 101
noisy-sum distribution (eqn function)101
NoisySumDis (eqgn function) 101
normal distribution (egn function)102
NormalDist (egn function) 102
Norsys address2
NumCases column in case fil@7

P

parameter learning46
parent nodes21
parents, found by getRelatedNodes{p
Pareto distribution (eqn function)L02
ParetoDist (egn function)102
Pascal 6
performance testing56
performance testing a net

functions available 108
Perl- 6
platforms- 7
Poisson distribution (eqn function)L02
Poisson process98
PoissonDist (eqn function)102
positive finding- 34
posterior probabilities 21
prediction- 7, 46
preference utilities 61
preprocessing input dats34
printConfusionMatrix|

in use- 57
prior probabilities 21
probabilistic causal models$
probabilistic causal network20
probabilistic equation 85
probabilistic inference 21

by node absorption 65

example program 22
probability as a measure of uncertaing9
probability revision- 21
Prolog- 6

Q

quadratic loss 57

quality assurance?7
question, finding best82
guestions email addres43

O

old versions of Neticd - 11
optimal decisions 67
Oracle database40

other state, reading cas87

R

random case generatio®3
readFindings() Net42

in use- 52
reduction in entropy 82
referring to discrete statés equation 89
regression testing7
relations (structural) between node®0
removatof-node callback - 18
removeField() User80
reorderStates() Node50
resources for Netical4
retractFindings() Net

in use- 38, 52
reverseLink() Node 65
reviseCPTsByCaseFile() Neb1

in use- 52

118 NETICA API

JAVA VERSION 4.18

reviseCPTsByFindings() Net1, 52
right-hand side of equation86

risk analysis 7

round (egn function) 102

roundto (eqn function) 102

run.bat file- 10

S

sampling- 22
second order probabilities50
sekect0 (egn function) 102
selectl (eqn function)102
Sensitivity class 108
Sensitivity document 83
sensitivity to findings 81

functions available 108
Sensitivity() constructor 82
sensor fusion 7
set of cases40
set of impossibilities in U¥ file - 44
set of possibilities in UVF file 43
setBytes() User80
setConstructorClass() Net and Nodkb
setCPTable() Node30

in use- 68
setCPTable() NodeEx30
setExperTable() Node50
setKind() Node 60, 90

in use- 68
setMaxlterationg(Learner- 54
setMaxTolerance() Learneb4

in use- 54
setNumber() User80
setObject() User80
setPassword() StreameB2
setRealFuncTable() Node

in use- 68
setReference() Usei80
sets of findings

functions available 107
sets of nodes77
setStateNames() Nod&0

in use- 68
setString() User 80
sign (egn function) 103
SimulateCases.java example prograd®
SimulateCases.java filel0
simulation- 83
single distribution (egn function)103
SingleDist (eqn function) 103
Snedeor distribution (eqn function) 98
soft finding-34,See al so o1 i

in case file 47
spreadsheet progran6
SQL Server, MS databasé0
src directory 11
src/neticaEx/aliases/ directoryl8
standard normal (egn function102
statename- 37
statistics of net 56
stopping criterion for learning48

kel i hood

Streamer class105
structural relations between node?0
structure learning 46
studentt distribution (egn function) 103
StudentTDist (egn function)103
style of nodes 61
sultract, passed to getRelatedNodes(p
support email addressl3
switchParent() Node62

in use- 63
system

functions available 105

T

tab-delimited text file- 36
table too big 88
tables

functions available 110
target node 46, 64, 82
target no@, sensitivity: 82
templates 20
termination condition for learning48
test cases56
testdataS e e
test nodes 56
test, finding best 82
testing performance of ne66
TestNet.java file 10
testWithCaseset() NetTesteb6

inuse- 57
threadsafe 7
titles - 29
trademark notices2
training cases 46, 56
trainingdataSee al so O6traini
triangular distribution (egn function)103
Triangular3Dist (eqn function)103
TriangularDist (egn functiory) 103
TriangularEn@Dist (eqn function) 103

al so O0test casesbod

ng

U

Umbrella example 67
unbounded interval in UVF file43, 45
uncertain findings in case file42
uncertainty- 49
Unicode- 29
uniform distribution (egn function)97, 103
UniformDist (eqn function) 103
tlnion gassed tQ teelatedNodes() 79

doBsénled iddbss6
upgrades websitel3
upgrading Netica AP19
user class 80
User class 111
user data fields

functions available 111

userdefined data 80
userdefined fields 80

casesbd

JAVA VERSION 4.18 NETICA API 119
UTF-16- 29 visual display
utility node - 67 functions available 111
UVF file - & VisualNode class 111
complete uncertainty 45
Gaussian 42
interval - 43 W
likelihood- 44
negative likelihood 45 WARNING ERR- 18
set of impossibilities 44 Weather example61
set of possibilities 43 Weibull distribution (egn function) 103
unbounded interval 43, 45 WeibullDist (eqn function) 103
wild state, reading case87
Windows- 7
V working with findings

functions available 106

Value class 106 write() Net- 31, 32

value node 67 in use- 62

value of information, utilityfree writeCases() Casesed0
functions available 108 writeFindings() Net

variable- 21 in use- 38

variance due to findings82

varianceratio distribution (egn function)98
varying node 82 X

version number of license9

virualevidenceSee al so 6soft findi ngpeqnfunction) 103
Visual Basic: 6

