Netica-] Manual

Version 4.18 and Higher

Java Version of Netica API

Norsys Software Corp

2 NETICA API JAVA VERSION 4.18

Netica-J Reference Manual
Version 4.18
October 21, 2010

Copyright 1996-2010 by Norsys Software Corp.

This document may be copied and stored freely, provided it is duplicated in its entirety, without
modification, and including the copyright notice.

Published by:

Norsys Software Corp.
3512 West 23rd Avenue
Vancouver, BC,
CANADA

V6S 1K5

WWW.NOrsys.com

Netica and Norsys are registered trademarks of Norsys Software Corp.

Microsoft, Windows, MS-DOS, Visual C++ and Visual Basic are registered trademarks of Microsoft, Inc.
Sun, Solaris and Java are registered trademarks of Sun Microsystems, Inc.

Linux is a registered trademark of Linus Torvalds.

Unicode is a trademark of Unicode, Inc.

PDF is a registered trademark of Adobe Systems, Inc.

X Window System is a trademark of X Consortium, Inc.

IBM and AIX are registered trademarks, and PowerPC is a trademark of International Business Machines Corporation.
Borland is a registered trademark of Borland International, Inc.

Intel and Pentium are registered trademarks of Intel Corporation.

Hugin is a trademark of Hugin Expert A/S

Other brands and product names are trademarks of their respective holders.

While great precaution has been taken in the preparation of this manual, we assume no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

JAVA VERSION 4.18 NETICA API 3

Contents

PUDLISRE DY: ...ttt ettt e h e h e b et e et e et e s bt e ebe e bt embeeateeseeeb e et e et e enteeneeeaeas 2
1 Introduction 6
1.1 Netica-Java APL........oooiiiee e 6
1.2 License Agreement and Password..........ccccoecverciieiiecrienieneenienie e eieeieens 9
1.3 Files Includedooeeiiiiiiiiieee e 10
1.4 Getting Started........ccceveveeiieeiieerieereerie e ere et se e esraeerreeseesreesteessneenns 11
1.4 Complete Javadocs Reference........coocvevvveciieiienienieciecieceeeeee e 12
1.5 IDE INStallation.......ccecuevueeienieeiceieeiee ettt 12
1.6 Upgrades, Support and Mailing List..........cccccvevieriiereeniienieereeseesee e 13
1.7 Other RESOUICES.....cccueiiiiiiiieiieieecieeeie ettt sttt e 14
2 Netica-J Package Design and Usage 15
2.1 The “Ex” classes NetEx, NodeEx, and NodeListEX.........ccccceoceerieninnnnnnne. 15
2.2 Inheritance of the Node and Net classes..........cocceeveeriinirriiieneeneenieeee, 16
2.3 MUultithreadingccceeviiiiirieeie ettt 16
2.4 Event Handlingcoooiiriiriiiiiiieieieeeee ettt 17
2.5 Java Objects and Native Object Perscccceeveeveeriiniiieiiiereeeeeiee, 17
2.6 Exception Handlingcoceeiiieiieiieiiieieeeetetete e 18
2.7 Finalizers & Memory Management............ccceveeveeriereenieneenienenseeneneennens 19
3 Probabilistic Inference 20
3.1 Bayes nets and Probabilistic Inference............ccoeevevieniienciiniiecieieiceen, 20
3.2 Netica's Probabilistic Inferencec.ccoceueeeciiieiiiieciieciiecee e, 21
3.3 Example of Probabilistic INferencecocceevveeveenienieniinieeececee, 22
4 Building and Saving Nets 27
5 Findings and Cases 34
5.1 Cases and Case Files........cccoriririiiiieeeceeee e 36
5.2 CASESELS .veeuveeiieeitieie ettt ettt ettt ettt sttt ettt e b e s bt sttt et e nbees 40
5.3 Connecting with a Databaseccceeeeviiiiiiiiciiccieceecee e 40
5.4 Case Files with Uncertain Findings..........cccocceevvievienienieciecieeeeeeieenen, 42
6 Learning From Case Data 46
6.1 AlZOTTENIMS ...oovviiiiiciicieeeeceee ettt e eeveeveebaeaeas 47
0.2 EXPETICIICE ...vevvievvieiieiieiteeiteereereeteesteestaestaeesbeesbeesteestaesssesssessseesseesseeses 49
6.3 Counting Learning..........ccceceveeevievriesiierieiie e e ereesreesreesteeseveeveeveessaesenas 50
6.4 How To Do Counting-Learningccccceeevveereevreeneeneenneereeneesseesseeseens 51
6.5 Example of Counting-Learning...........ccccecveevveevrievieeneesiesieereereesveesseennnns 52
6.6 EM and Gradient Descent Learningccceevveevveevieniesieereeereesreesseennnns 54
0.7 FAING ...cviiiiiiiiecie ettt e v e e e e te e s te e s tae s ebeseveeabeebaeeeas 55
6.8 Performance Testing a Net using Real-World Datac.cccoeevveieennnnnen. 56
7 Modifying Nets 60

7.1 Common MOAIFICAIONSccccovveiiiiiiieeeeeieeeeeeee e e e e et e e e e e seseaareeeeeeeeas 60

NETICA API

JAVA VERSION 4.18

7.1 Node Librariesccceeeereerienienieeieeie et
7.2 Net Reductioncoevieiiiiieiieeieec et
7.3 Probabilistic Inference by Node Absorptionc.ccceeeeee.

8 Decision Nets

8.1 Programming EXample........c.ccccevvevieninnienieceeseeeee e

9 Drawing Nodes and Nets

9.1 Netica Net Visual Properties and the gui Package
9.2 NOdE POSIHIONecvieerieiieiieiie et
9.3 NOAE StYIE ...vveeiieieeieeieeesee e
9.4 Drawing NOAESccverriereerierreereerieesieeseeseesnesreesseesseeses
9.5 Event Handling...........cccevevvieniieiieieeeeceesee e
9.6 NELVICWET ... eecvieiieerierieiiesiee e ereereetaesteesteessressseesseesseennes
9.7 Miscellaneous Useful Features...........ccoovevvevvercvincreecreeneenne,
9.8 Feedback Wantedcccceevveviiiiieieeieseecee e

10 Special Topics

10.1 Node Lists and Node-sets........cccoevureevueeeeeeeeiieeeereeeeree e,
10.2 Graph Algorithms........cooeeviiiiieriiiieeeeeeeee e
10.3 User-defined Data.............cooouveeeeiiieieieiiieeeeceee e
10,4 SeNSILIVILY ..eeevieiieieetiesiiesite ettt ettt
10.5 Stochastic SIMUlAtion..........c.c.eeeeevveieeeiineeeeeieee e

11 Equations

11.1 Simple EXxamples.......c.ccoceviriinenenieninieienceieneseeen
11.2 EQuation SYNtaXccccevererienieneenienienienienceiesieeeeneeeeees
11.3 Equation Conditionalsccccoeveevenensienenieneneeieneneen
11.4 Converting an Equation to a Table.......c..ccccceccevinenennnee.
11.5 Equations and Table Sizecccccoceeverervienencenineeienenne.
11.6 Link Namescceevvieriiiiierieeieeieee et
11.7 Referring to States of Discrete Nodescccceceevereeiennens
11.8 Constant Nodes as Adjustable Parametersccccouee..e.
11.9 Tips on Using EQUAtionsccceevveveerierienieeieeieeeeenes
11.10 Specialized Examples.........ccccveveeiieevieenieeiieciecieereeveenes
11.11 Equation Constants, Operators, and Functions...................

11.12 Special Math and Distribution Functions Reference
12 Bibliography
13 Functions by Category

COMPIING....oiiiiiiiiieciie et et e e eaeeesaree s
Belief Updating and Inferenceccoceevvvevieiiieieenieneeceeenes
Learning From Data...........ccccvveeiiieciiiiiiieieeeee e
DeCISION NELS ...ceviiiiiiiiieieetieite ettt et

JAVA VERSION 4.18 NETICA API

INOAE LLISES ittt ettt et st e sbe e bt e st 107
Cases (Sets of FINAINGS)..oveervieriiiiiiiieieeieeeee et 107
Sensitivity to Findings (Utility-Free Value of Information)ccccc........ 108
Performance Testing @ NEt.......ccoccvieevierierieniesie e ere e seees 108
Database CONNECLIVILY ...ccuvevierieriierieiiesieeseesee e ereesteesseessreseseesseesseesseessnes 108
High-Level Net ModifiCation...........cvecverierieiieeieeieeseesee e e sve e seees 108
Low-Level Net MOdifiCationcocceeerieierienieieseeceseeeeeesee e 109
Retrieving Net Informationc..ccveeeerierieiieiie e 109
EQUALIONS.....eotiieieiiicieeieeeese ettt ettt e se e se e saeseaessseesseensaens 110
TADIES ..ttt et 110
INOAE-SELS ...ttt ettt ettt sttt et e et et e e e s bt e e steeneeeea 110
ViSUAL DISPIAY ...cvviiiiiiieiieiieriecie ettt re ettt e ser e s e esseessaeeees 111
User Data FIelds........cooierieieieieeeec e 111

14 Index 112

6 NETICA API JAVA VERSION 4.18

1 Introduction

This reference manual is for Netica-J, the Java version of the Netica APl Programmer’s Library. It is
meant to be used in conjunction with the onscreen Netica-J javadocs reference (see below). Netica-J is a
set of Java classes and an accompanying Java Native Interface (JNI) library that allow a Java developer to

use the Netica API Programmer’s Library for working with Bayesian networks.

This manual is not a manual for Netica Application, which is an easy to use point-and-click application

program with much of the same functionality (see http://www.norsys.com/netica.html). Users of the API

will typically want to have the Application handy for visually inspecting and modifying nets. A version

of Netica soon to be released will allow Netica API to use the GUI of Netica Application.

Besides Java, other versions of Netica API exist for C/C++, C# and Visual Basic each offering the full

Netica functionality. Visit http://www.norsys.com/netica_api.html to learn more about the other members
of the Netica API family, and to obtain their documentation. The C version can be used by programs
written in any language which can call C functions, such as C++, Python, Perl, Prolog, Lisp, Matlab,
Delphi Pascal, Fortran or Cobol). Interface files for some of these languages, developed by the Netica
community, are available from Norsys. Matlab is supported through this, the Java API.

This manual assumes that you are familiar with the Java programming language. It also assumes
familiarity with Bayesian networks or influence diagrams, although it has a little introductory material,
especially on issues that are new or generally not well understood. Questions and comments about

material in this manual may be sent to: netica-j@norsys.com.

1.1 Netica-Java API

The Netica-J API is a complete library of Java classes for working with Bayesian networks (also known
as Bayes nets, belief networks, graphical models or probabilistic causal models) and influence diagrams
(also known as decision networks). It contains functions to build, learn from data, modify, transform,

performance-test, save and read nets, as well as a powerful inference engine. It can manage “cases” and

http://www.norsys.com/netica.html
http://www.norsys.com/netica_api.html
mailto:netica-j@norsys.com

JAVA VERSION 4.18 NETICA API 7

sets of cases, and can connect directly with most database software. Bayes nets can be used for diagnosis,
prediction, classification, sensor fusion, risk analysis, decision analysis, combining uncertain information

and numerous probabilistic inference tasks.

Programs that use Netica-J completely control it. For example, Netica functions will not take any action
until called, Netica will not do any I/O unless requested to, and its functions will not take an unpredictable
amount of time or memory before returning. Netica-J is threadsafe in multi-threaded environments. It

may be used in conjunction with other Java or JNI C libraries and it won't interfere with them.

Versions of Netica-J are available for MS Windows, Linux, and Macintosh (and for many other platforms
from cell phones to mainframes - contact us for info), and each of these has an identical interface, so you
can move your code between these platforms without changing anything to do with the Netica API. For

the latest versions for the more common platforms, visit http://www.norsys.com/download_api.html

Before releasing any new version of the Netica API, every function is put through rigorous quality
assurance testing to make sure it operates as designed. Hundreds of real nets and millions of random nets
are generated and solved in multiple ways to check the inference results. This level of QA, combined
with a careful initial design and over ten years of extensive customer usage, has resulted in a rock-solid

product.

The Netica API has been designed to be easily extended in the future without changing what already
exists. Many new features are currently under development, and it will continue to be extended for years

to come.

Netica API features:

* Dynamic Construction: Can build and modify networks "on the fly" in memory (to support working
with dynamic Bayes nets), and can save/read them to file.

» Equations: Probability tables may be conveniently expressed by equations, using a Java/C type syntax
and taking advantage of an extensive library of built-in functions, including all the standard math
functions and common probability distributions, as well as some functions and distributions
specially suited to Bayes nets, such as noisy-or, noisy-max, noisy-sum, etc.

* Learning from Data: Probabilistic relations can be learned from case data, even while the net is being
used for probabilistic inference. Learning from data can be combined with manual construction of
tables and representation by equations. It can handle missing data and latent variables or hidden
nodes. Learning algorithms include: counting, sequential updating, fractional updating, EM
(expectation maximization), and gradient descent.

» Database Connectivity: Allows direct connection to most database software.
* Threadsafe: Can be used safely in multi-threaded environments.

* Encryption: Can save and read nets to file in encrypted form, which allows deploying solutions relying
on Bayes nets kept private to an organization.

http://www.norsys.com/download_api.html

8 NETICA API JAVA VERSION 4.18

* Sensitivity: Netica can efficiently measure the degree to which findings at any node can influence the
beliefs at another node, given the findings currently entered. The measures can be in the form of
mutual information (entropy reduction), or the expected reduction of real variance.

» Advanced Decision Nets: Can solve influence diagrams which have multiple utility and decision
nodes to find optimal decisions and conditional plans, using a junction tree algorithm for speed.
Handles multi-stage decision problems, where later decisions depend on the outcomes of earlier
ones, and on observations not initially known. No-forgetting links need not be explicitly specified.

* Junction Tree Algorithm: Can compile Bayes nets and influence diagrams into a junction tree of
cliques for fast probabilistic inference. An elimination order can be specified or Netica can
determine one automatically, and Netica can report on the resulting junction tree.

* Soft Evidence: Accepts likelihood findings (i.e., “virtual evidence”), findings of the form that some
variable is not is some state, Gaussian findings, and interval findings, as well as regular real-
valued or state findings.

* Link Reversal: Can reverse specified links or "sum out" (absorb) nodes of a Bayes net or influence
diagram while maintaining the same overall joint probability distribution, properly accounting for
any findings in the removed nodes or other nodes.

* Disconnected Links: Links may be individually named and disconnected from parent or child nodes,
thus making possible libraries of network fragments (which you may then copy and connect to
other networks or node configurations).

* Case Support: Can save individual cases (i.e. sets of findings) to file, and manipulate files of cases.
Works with the UVF file format, which allows cases to be incomplete or have uncertain values
(Gaussian, interval, sets of possibilities, sets of impossibilities, etc.), and associates an ID number
and multiplicity with each case.

* Simulation: Can do sampling (i.e. stochastic simulation) to generate random cases with a probability
distribution matching the Bayes net. Can use a junction tree algorithm for speed, or do direct
sampling for nets too large to generate CPTs or a junction tree.

» User Data: Every node and network can store by name arbitrary data fields defined by you. They may
contain numbers, strings, byte data, etc., and are saved to file when the object in question is being
saved. As well, there are fields not saved to file, which can contain a pointer to anything you
wish.

* Error Handling: Has a simple but powerful method for handling usage errors, which can generate very
detailed error messages if desired.

» Argument Checking: Allows programmers to control how carefully API functions check their
arguments when they are called, including a “development mode” to extensively check everything
passed to an API function.

» Compatibility: Can work hand-in-hand with the Netica Application standalone product (for example,
sharing the same files), and with Netica API versions for other languages.

* Efficient: Is optimized for speed, and is not too large (2 MB typical).

» Many Platforms: Is available for a wide range of platforms including MS Windows (95/NT to Vista),
Linux, Macintosh, AIX, etc. Contact Norsys for other platforms.

JAVA VERSION 4.18 NETICA API 9

* Memory Limiting: You can set a bound on how much total heap space Netica-J API is allowed to
allocate for large tables, thereby preventing virtual memory thrashing or the memory-starving of
other parts of your application.

 Java Oriented Features:
o Clean object-oriented design
o Comprehensive javadocs and manual
« Sample java source applications to get you started
o Uses Java's exception handling mechanism in the natural way
« Supports event listening by any Java object for events such as the creation,
deletion, duplication, etc. of Nets or Nodes
« Supports user data fields for any Serializable Java object
o Supports standard Java I/O streams
« Supplies graphical visualization of Bayes nets with AWT/SWING classes

* More Features: A more extensive list of features is available from:
http://www.norsys.com/netica_api.html

1.2 License Agreement and Password

Before using Netica API, make sure you accept the license agreement that is included in this package as

the file License Agreement.pdf.

If you have purchased a license to use Netica API, you will have received a license password by email, on
the invoice, and/or on the shipped disk. You pass the license password to the Environ constructor. For

example:

Environ env = new Environ ("your unique license");

If you do not have a license password, then you can simply supply null in place of it, in which case

Netica-J API will be fully functional, but limited in problem size (e.g. size of nets, size of data sets).

The license password you have purchased also licenses you to use versions of Netica API for other
languages, such as the C version (Netica-C), the C# or Visual Basic version, or the C++ version. Simply
supply that license string to the appropriate Environment constructor in those languages. The same rights

and obligations granted by the API license apply to all the language versions.

If your license password enables Netica API, it will have a “310-” within it. The digit immediately
following that is the version number of the license. It must be at least 3 to fully enable this version (3.xx)
of Netica API. If it is less, then after you call new Environ(), a warning message will be available for
viewing if you call NeticaError.getWarnings(), and Netica API will continue operation in limited

mode. To upgrade your license, contact Norsys, or see: https://www.norsys.com/order_v3_upgrade.htm.

http://www.norsys.com/netica_api.html
https://www.norsys.com/order_v3_upgrade.htm

10

NETICA API JAVA VERSION 4.18

1.3

Files Included

The following files are included in the distribution of Netica-J, the Java version of Netica API:

Directory

File

docs

bin

src/neticaEx/

src/neticaEx/
aliases

demo

examples

examples/
Data Files

e Netica] Man.pdf
e javadocs/
e License Agreement.pdf

e Netical jar

e Netical.dll
(libNetical.so)
(libNetical.jnilib)

¢ Netica.dll
(libnetica.a)

¢ NetEx.java
¢ NodeEx.java
¢ NodeListEx.java

e Net.java
¢ Node.java
e NodeList.java

e Demo.java
e compile.bat (.sh)

e run.bat (.sh)

¢ BuildNet.java

e Dolnference.java

¢ SimulateCases.java
e LearnCPTs.java

e LearnLatent.java

e ClassifyData.java
e MakeDecision.java
e DrawNet.java

e NetViewer.java

o TestNet.java

e compile.bat (.sh)

e run.bat (.sh)

o ChestClinic.dne

e BreastCancer.dne

o ChestClinic.cas
oChestClinic_WithVisuals.dne
e LearnLatent.cas

e BreastCancer.cas

Description
e the file for this document
o the javadocs directory for Netica-J
e a legal document relating to the use of Netica API

o the Java class library that defines Netica-J
o the Java-to-Native interface library (Windows only)

« «“ «“ (Unix/Linux only)
« «“ «“ (MacOSX only)
o the native Netica API library (Windows only)
« «“ «“ (MacOSX only)
e A class containing useful Net methods
3 «“ “ Node «“
3 «“ “ NodeList “
e A convenience class that renames NodeEx as Node
. “ «“ “ NetEx as Net
. «“ «“ “ NodeListEx as NodeList

¢ a sample application to test your Netica-J installation
¢ a sample batch file for compiling Demo.java
(.bat for Windows, .sh for Unix/Linux/MacOSX)
¢ a sample batch file for running Demo.class
(.bat for Windows, .sh for Unix/Linux/MacOSX)
¢ demonstrates building a Bayes net from scratch
e demonstrates doing inference
¢ demonstrates creating case instances that statistically derive from a given net
¢ demonstrates learning from cases
e demonstrates EM Learning
o demonstrates Naive Bayesian Classification of real-world medical data
e demonstrates building a decision net and choose an optimal decision with it
o demonstrates use of the gui package for drawing nets
o demonstrates use of the gui package for editing nets and their findings
o demonstrates testing the performance of a learned net with the net tester tool
¢ a sample batch file for compiling all the java files in this directory
e a sample batch file for running all the java programs in this directory, after
they have been compiled
e an example net file required by SimulateCases/LearnCPTs/TestNet.java
e an example net file required by ClassifyData.java
e a case file created by SimulateCases.java and required by TestNet.java
e ChestClinic.dne but including all the size/position/color display information
e a case file required by LearnLatent.java
e a case file required by ClassifyData.java

JAVA VERSION 4.18 NETICA API 11

The Netica-J directory structure

The docs/ directory contains manuals, javadocs, license agreements, and any other documentation.

The bin/ directory contains the Netica-J runtime software without which Netica-J will not function.

The sre/ directory contains source software that is distributed with Netica-J. You are free to examine, compile, or
copy from these source files. We suggest that you leave the original files unmodified. These functions may change
in future version of Netica.

The demo/ directory contains a simple program that should be compiled and run after installation to establish that
your Netica-J system is correctly installed and ready to use.

The examples/ directory contains assorted sample data and source code that you may examine, copy, and edit freely.

1.4 Getting Started

Recommended Installation steps:

1. A Java-2 platform is required. There are many suppliers, for example SUN Microsystems at

http://java.sun.com/products/. Version 4.18 was constructed using Java 1.4.2 and should be

compatible with any 1.4 and higher platform.

2. Download Netica-J from the Norsys website: http://www.norsys.com/netica-j.html (older

versions can be found at http://www.norsys.com/downloads/old versions). Choose a version

that matches your OS/platform.
3. Unzip it, and it will form a directory called NeticaJ 325 (or the current version number).
4. Test your installation with the Demo application provided:

a) Change to the demo/ directory and at the command line, type: compile.bat
(compile. sh on Unix/Linux/MacOSX). Or click on the compile.bat icon. This will

compile Demo.java and create Demo.class.

b) At the command line, type: run.bat (run.sh). Or click on the run.bat icon. This

will run Demo.class.

c) Ifitdisplays a welcome message, and does simple probabilistic inference without

declaring any errors, then your installation was successful.

5. Now that you have the example program running, you can duplicate the demeo/ directory,
replace Demo.java with your own source files, and you are ready to build your own
application. Don't forget to replace "null" in "new Environ (null)" with your own

license password, if you want to have the full functionality of Netica.

http://java.sun.com/products/
http://www.norsys.com/netica-j.html
http://www.norsys.com/downloads/old_versions

12

NETICA API JAVA VERSION 4.18

1.4

6. Demo.java, is a good starting point for developing your own applications. You may wish to
"cut-and-paste" from it. Similar examples showing how to build a net from scratch, do

inference, generate cases, and learn from cases are provided in the examples/ directory.

7. If you are familiar with the Hugin or JavaBayes systems and would like information on

equivalent Netica functions, contact Norsys.

Complete Javadocs Reference

For javadocs-style documentation for Netica-J, simply point your browser at the index.html file in the

docs/javadocs/ directory. The javadocs very thoroughly document every class and every function of the

Netica API. You will find it an invaluable companion during development.

1.5

IDE Installation

Using Java IDEs (Eclipse, JBuilder, NetBeans, JDeveloper, Forte, etc.)

You must inform your IDE of the locations of the three library files: NeticaJ.dll (libNeticalJ.so),

Neticad.jar, and Netica.dll (libnetica.a). Assuming Netica-J was installed at the following location

on your filesystem:

Windows: C:\Neticad 325
Unix/Linux/MacOSX: /home/Neticad 325

Netical.dll(libNetical.so/.jnilib) must appear on the java library path. Typically this is done
with a -D option to the JVM. For example:
Windows: java -Djava.library.path=C:\NeticaJd 325\bin
Unix/Linux/MacOSX: Jjava -Djava.library.path=/home/Neticad 325/bin

Netical.jar must appear on the java CLASSPATH. For example:
Windows: java -classpath C:\Neticad 325\bin\NeticaJ.jar
Unix/Linux/MacOSX: Jjava -classpath /home/Neticad 325/bin/Neticad.jar

Windows Only: Netica.dll must appear on the Windows execution "path, so that Windows can find it.
For example:
Windows: set PATH=C:\NeticaJ 325\bin; $PATHS%

Eclipse instructions:

JAVA VERSION 4.18 NETICA API 13

1. Create your Java project as usual

2. In the "Project Properties" dialog, choose the "Java Build Path" link, then click on the "Libraries™ tab,
and then click on the "Add External Jars" link. Navigate to the C:\NeticaJ 325\bin directory and select
Netical.jar

3. In the "Run As" dialog, go to the "Arguments" tab and in the "VM Arguments" window create the
following argument: -Djava.library.path=C:\Netical 325\bin

4. Windows Only: Still in the "Run As" dialog, go to the "Environment" tab and create a new "PATH"
variable with value: C:\NeticalJ 325\bin;%PATH%

1.6 Upgrades, Support and Mailing List

New versions of Netica API are available for download from the Norsys website (from the “Downloads”

menu at www.norsys.com). If you are using a license password, it will work with any version released

within a year of the password being issued (and often longer).

If you would like to be notified of version updates and other news regarding Netica-J, please visit

https://www.norsys.com/mailing_list.html?interests=Netica-J] and supply us with your e-mail address.

Mailings are infrequent, and your privacy will be respected.

We at Norsys have worked hard to make Netica-J a very high quality and robust package that is easy and
natural to use. If you have any ideas for how it can be improved, we would be very happy to hear them.

Please send your suggestions to: netica-j@norsys.com

http://www.norsys.com/
https://www.norsys.com/mailing_list.html?interests=Netica-J
mailto:netica-j@norsys.com

14 NETICA API JAVA VERSION 4.18

1.7 Other Resources

The following resources at the Norsys website may be helpful when using Netica API:

Netica Application - This program has an easy-to-use graphical interface, and most developers
working with Netica API use it to visualize and/or edit the Bayes nets they are working with. It
is also useful for experimentation, and trying out concepts that are to be implemented using
Netica API, since it operates in much the same way.

Website location: http://www.norsys.com/netica.html

Resources Page - Describes training, consulting, literature and websites available for Netica.

Website location: http://www.norsys.com/resources.htm

Bayes Net Library - A website containing many example Netica files that are ready to download into
Netica (Application or API). They are Bayes nets and decision nets that have become classics in
the literature, or are contributed by other Netica users. This is a good place to look for
inspiration and ideas.

Website location: http://www.norsys.com/net_library.htm

DNET File Format - Describes the file format for Netica DNET files (which have file extension .dne
or .dnet).

Website location: http://www.norsys.com/dl/DNET _File Format.txt

http://www.norsys.com/netica.html
http://www.norsys.com/resources.htm
http://www.norsys.com/net_library.htm
http://www.norsys.com/dl/DNET_File_Format.txt

JAVA VERSION 4.18 NETICA API 15

2 Netica-J Package Design and Usage

This section outlines programming principles and issues as they relate to Netica-J's operation and
organization. If you are an experienced Java developer or you are planning a sizeable development effort
with Netica-J, you will definitely want to read and understand this section before beginning your

development.

2.1 The “Ex” classes NetEx, NodeEx, and NodeListEx

The “Ex” classes inherit from their parent class (NodeEx extends Node, NetEx extends Net, etc).

They are built on top of the core Netica system to provide convenience of use (the “Ex” stands for
“Extra”, “Example”, “External”, “Experimental”, and “Excellent!”’). These are utilities and shortcuts that
were deemed useful, but not basic enough to belong in the base class. Some of them are “Ex” methods

because they are more useful in source code form, so that you can customize them to your needs.

Because their Java source is included, the “Ex” classes are a good place to look for coding examples.

Indeed, many of the coding examples found in the javadocs are taken from the “Ex” classes.

Unlike the core Netica system, the “Ex” classes may change in future versions; methods may be added,
removed or modified. For this reason, you may want to keep copies of the Ex classes for future reference,

or you may want to copy out any methods you need to form your own extensions of the parent classes.

Since the “Ex” classes contain so many useful methods, many users will want to use the “Ex” classes in
place of the more basic parent classes. See Section 3, Inheritance, below, for considerations when doing
this.

The “Ex” classes are in part supported by the Netica-J user community, so please feel welcome to submit

additional methods that you have found useful, or to suggest improvements to the ones already there.

16 NETICA API JAVA VERSION 4.18

Some of the “Ex” class methods are static, while others are not. The basic criterion of choosing to make a
method static was whether that method could be thought of as a “standalone-utility” that would be useful
to have around even when you didn’t have an “Ex” object present. Since none of the “Ex” classes define
new state data, it is a trivial exercise to convert a static method to be non-static or vice versa, should you

prefer the alternate.

Because the “Ex” classes are so useful, many developers will want to use them directly. To make this
easy, their compiled classes have been included in the Netical jar distribution. All you need do is
import norsys.neticaEx.*; and you are ready to use them without the need to compile your

own versions of them.

Finally, as a convenience, we also supply in the norsys.neticaEx.aliases package, three wrapper classes
for NetEx, NodeEx, and NodeListEx, that are named Net, Node, and NodeList, respectively. They allow
you to use the base class names and still use the Ex classes. See demo/Demo.java and

examples/BuildNet.java for examples of how to use these convenience classes.

2.2 Inheritance of the Node and Net classes

Advanced users will want to create their own specialized Node and Net classes. To make this task easier,
and avoid the need for copy constructors, we have supplied you with a means to inform Netica-J what
class you would like it to use when constructing a Net or Node (for example, when Netica-J is reading a

net in from a file). The static methods:
Net.setConstructorClass (String className) and
Node.setConstructorClass (String className)

have been supplied for this purpose. All they require is that your Net or Node extension have a default

constructor. See their javadocs pages for examples.

Some users will want to use the words “Net” and “Node” for their own net and node classes, that inherit
from norsys.netica.Net and norsys.netica.Node, respectively. The supplied files in
src/neticaEx/aliases/ have examples of this. Although, overloading the terms “Net” and “Node” like this
is not difficult, namespace conflicts may arise. In general, if you explicitly import your Node or Net

class, the Java compiler will use those as the default classes.

2.3 Multithreading

If you are running Netica-J within a single process and are not creating more than one thread in that
process, you don’t need to consider this issue. However, if you are operating in a concurrent usage

environment, then you need to consider threading issues. Netica-J is threadsafe, in that if one thread calls

JAVA VERSION 4.18 NETICA API 17

a Netica-J function, and while it is executing another thread calls a Netica-J function, the new call will not
interfere, even if they are both trying to operate on the same object (the new call will execute after the
original is done). Of course, your software must do its own appropriate synchronization, and consider
race possibilities, if you have more than one thread working on the same object (such as net or node) at

the same time. Threads operating on separate nets will not have any interference.

For efficiency reasons, you may want to consider the following: Many Netica-J functions will block other
Netica-J functions until they return. This is an efficiency concern only, and not a deadlock concern, since
the executing Netica-J function will not be waiting on any other thread (unless you do that yourself
through the use of Netica-J callbacks).

24 Event Handling

If you wish your program to receive events, Netica-J has the ability to call your program when certain

types of events occur.

Any Java object can choose to listen to Netica events by simply implementing the NeticaEventListener
interface and asking the node or net that generates the events to add itself to that node or net’s listener list.
The methods Node.addListener and Net.addListener are supplied for this purpose. Since
Node and Net objects are already NeticaEventListeners, they each possess an eventOccurred
(NeticaEvent) method. If you should choose to override this method, it is important that you call
the base class method super.eventOccurred (event) in your method, so that this node or net

will still be able to handle deleting events properly.

Currently events are generated for the creation, removal and duplication of Nodes and Nets. Future

versions of Netica-J will include more types of events. If you have a request, please let us know.

2.5 Java Objects and Native Object Peers

Since Netica-J is a JNI API, many of the Java objects created are “proxies” of their native or “peer”
counterpart objects internal to the core Netica binary. This is true of Environ, Net, Node, NetTester,
NeticaError, Sensitivity, and Streamer. The remaining Java classes (General, NeticaEvent,
NeticaException, NeticaListener, NodeList, State, User, Util, Value, and VisualNode) do not have peer

equivalents.

The existence of peer relationships is usually transparent to the Java developer. Netica-J was designed to
give the developer as much as possible the sense he/she is working in a 100% pure Java environment.
That provides the best of both worlds: the productivity, safety and memory management of Java with the

speed and reliability of a highly optimized, highly tested, widely used native binary.

18 NETICA API JAVA VERSION 4.18

The only situations where you need to know about peer objects is when considering finalization and the
cleanup of native resources (discussed in the Finalizers section, below), or when working in a model-
view-controller (MVC) environment where things could be happening to the native model objects, and
the Java environment is presenting but one view on that model. This can happen, for instance, if Netica-J
is communicating with peer objects inside Netica Application. A user of Netica Application could delete
a native node via the GUI, and the Java environment would then find that its Node object had been
disconnected from its peer. Netica-J has a standard Java Publish-and-Subscribe mechanism (using
NeticaEventListeners) for Java objects to be made aware of such occurrences on the native side of the

universe (see the Event Handling section, below).

2.6 Exception Handling

Exception handling in Netica-J works in the normal Java way. If a method encounters an unexpected
situation that it cannot resolve, a NeticaException is thrown. The vast majority of Netica-J methods are
able to throw a NeticaException. The toString() method of NeticaException details the reason for the
Exception. Hence, your typical try-catch block could look something like this:

try |
// call Netica-J methods
}

catch (NeticaException e) {
e.printStackTrace () ;
}
If you are familiar with the Netica C API, you will find that Netica-J’s exception handling mechanism
makes coding much more convenient and straightforward, since you no longer need to actively check if
an error has occurred. Netica-J looks after that for you, and will throw a NeticaException automatically if
any “serious” (“show stopper”) error occurs. By “serious” we mean any errors of severity level

ERROR_ERR or XXX ERR which means the requested operation was not completed.

Note that this means that WARNING ERR and lower warnings do not result in a NeticaException being
thrown, so in those cases where such warnings can occur, you can actively call the static method
NeticaError.getWarnings after the method call, to determine if a warning has occurred and, if
so, what the warning was about. See the javadocs for NeticaError.getWarnings for examples of
this.

It is okay to call NeticaError.getWarnings only once in awhile, since warnings will accumulate

until the next getWarnings invocation, whereupon they are cleared from the warnings list.

JAVA VERSION 4.18 NETICA API 19

2.7 Finalizers & Memory Management

For large networks and large node tables, Netica can consume large amounts of memory. Often Java
developers cease to worry about memory management, as the JVM’s garbage collector will automatically
collect Java objects that can no longer be referenced. However, the Java specification does not require
that a JVM actually call the garbage collector whenever a Java object reference is no long used. It may or
may not do so, and it may choose to do so on its own schedule. Accordingly, you may want to actively
call the delete () or finalize () methods on resource-hungry objects when you are done with those
objects, rather than wait for the JVM to free them.

For most Netica objects, calling finalize () frees all their native resources, but not for Node and
State objects. For them, finalize () justindicates that you are done with the reference, but the native
resources won’t be freed until the owning Net or Node is freed. However, calling Node.delete ()
will remove the Node from its owning Net and free its resources, and calling State.delete () will

remove the State from its owning Node and free its resources.

Note, if you ever override the finalize () method of any Netica-J class, be certain that you always
call the base class finalizer method super.finalize () as your last instruction, so that Netica-J can
do its own housekeeping upon the Java object being collected. For example, if your class extends
norsys.netica.Streamer, and you need to override the finalize () method to perform special close-

down handling of files and such, then your finalize method would look something like this:

/**
* overrides Streamer.finalize().
*/
public void finalize () throws NeticakException {

your own finalization logic
super.finalize();

20 NETICA API JAVA VERSION 4.18

3 Probabilistic Inference

3.1 Bayes nets and Probabilistic Inference

A Bayes net (also known as a Bayesian network, BN, BBN, belief network, probabilistic causal network
or graphical model) captures our believed relations (which may be uncertain, or imprecise) between a set
of variables that are relevant to some problem. They might be relevant because we will be able to observe
them, because we need to know their value to take some action or report some result, or because they are

intermediate or internal variables that help us express the relationships between the rest of the variables.

Some Bayes nets are designed to be used only once for a single world situation. More often, Bayes nets
are designed for repetitively occurring situations. They may be constructed using expert knowledge
provided by some person, by an automatic learning process which examines many previous cases, or by a
combination of the two. If the net is to be used repetitively, then it may be considered as a knowledge
base. Sometimes nets that are built to be used only once are constructed automatically on-the-fly, perhaps
by pasting together pieces of nets from libraries using templates. Then the libraries and templates
together make up a knowledge base. Netica is designed to work for either type of application. It allows
probabilities to be entered directly, perhaps originally coming from an expert, and it can learn
probabilities from data. It will not handle templates directly, but it has the facilities for libraries and on-

the-fly construction that such a program requires.

A classic example of the use of Bayes nets is in the medical domain. Here each new patient typically
corresponds to a new case, and the problem is to diagnose the patient (i.e., find beliefs for the
undetectable disease variables), or predict what is going to happen to the patient, or find an optimal
prescription, given the values of observable variables (symptoms). A doctor may be the expert used to
define the structure of the net, and provide initial conditional probabilities, based on his medical training
and experience with previous cases. Then the net probabilities may be fine-tuned by using statistics from

previous cases, and from new cases as they arrive.

JAVA VERSION 4.18 NETICA API 21

When the Bayes net is constructed, one node is used for each scalar variable, which may be discrete,
continuous, or propositional (true/false). Because of this, the words "node" and "variable" are used
interchangeably throughout this manual, but "variable" usually refers to the real world or the original

problem, while "node" usually refers to its representation within the Bayes net.

The nodes are then connected up with directed /inks. Usually a link from node A (the parent) to node B
(the child) indicates that A causes B, that A partially causes or predisposes B, that B is an imperfect
observation of A, that A and B are functionally related, or that A and B are statistically correlated. The
precise definition of a link is based on conditional independence, and is explained in detail in an
introductory work like RussellNorvig95 or Pearl88. Finally, probabilistic relations are provided for each
node, which express the probability of that node having different values depending on the values of its

parent nodes.

After the Bayes net is constructed, it may be applied. For each variable we know the value of, we enter
that value into its node as a finding (also known as "evidence"). Then Netica does probabilistic inference
to find beliefs for all the other variables. Suppose one of the nodes corresponds to the variable
"temperature", and it can take on the values cold, medium and hot. Then an example belief for
temperature could be: [cold - 0.1, medium - 0.5, hot - 0.4], indicating the probabilities that the
temperature is cold, medium or hot. The final beliefs are sometimes called posterior probabilities (with
prior probabilities being the probabilities before any findings were entered). Probabilistic inference done

within a Bayes net is called belief updating.

Probabilistic inference only results in a set of beliefs at each node; it does not change the net (knowledge
base) at all. If the findings that have been entered are a true example that might give some indication of
cases which will be seen in the future, you may think that they should change the knowledge base a little
bit as well, so that next time it is used its conditional probabilities more accurately reflect the real world.
To achieve this you would also do probability revision, which is described in the "Learning From Case
Data" chapter. As well as regular probabilistic inference, Netica can do a number of other types of
inference, such as finding the most probable explanation (MPE), finding mutual information, solving

decision nets, node absorption, etc.

3.2 Netica's Probabilistic Inference

There are three ways that Netica can do regular probabilistic inference: by junction tree compiling, by
node absorptions, and by sampling. For most applications you will want to use the junction tree method,
because usually it is most convenient and executes much faster. You may want to use node absorptions
when you have some findings that are going to be repeated in many inferences (e.g. if you discover that
something is always true in the context of interest), or large parts of a network that are irrelevant to a

query, so can be pruned away. This section deals with junction trees; see the "Modifying Nets" chapter

22 NETICA API JAVA VERSION 4.18

for information on link reversals and node absorption. Sampling is an inexact method, and is usually used
only when the Bayes net is too large to compile into a junction tree, or there are continuous variables
whose value you want to provide by equation, and don’t want to discretize. It is accomplished by calling
Net.generateRandomCase() many times (say 1000), with argument method=2
(FORWARD_SAMPLING), and recording what percentage of the cases resulted in the node of interest having

a given value.

Netica uses the fastest known algorithm for exact general probabilistic inference in a compiled Bayes net,
which is message passing in a junction tree (or "join tree") of cliques. This is based upon the work of
LauritzenSpiegelhalter88, which is described in much simpler and more extensive terms in CowellDLS99
and SpiegelhalterDLC93.

In this process the Bayes net is first "compiled" into a junction tree. The junction tree is implemented as a
large set of data structures connected up with the original Bayes net, but invisible to you as a user of
Netica. You enter findings for one or more nodes of the original Bayes net, and then when you want to
know the resultant beliefs for some of the other nodes, belief updating is done by a message-passing
algorithm operating on the underlying junction tree. It determines the resultant beliefs for each of the
nodes of the original Bayes net, which it attaches to the nodes so that you can retrieve them. You may
then enter some more findings (to be added to the first), or remove some findings, and when you request

the resultant beliefs, belief updating will be performed again to take the new findings into account.

The amount of memory required by the junction tree, and the speed of belief updating are approximately
proportional to each other, and are determined by the quality of the compilation. The quality of the
compilation depends upon the elimination order used, which is a list of all the nodes in the net. Any
order of the nodes will produce a successful compilation, but some do a much better job than others. You
may specify an elimination order (perhaps from your own program, or by using Netica Application’s

“optimize compile”), or just let Netica API find a good one itself.

3.3 Example of Probabilistic Inference

Now let's look at an example of using the Netica API to do probabilistic inference. In this example we
will read in a simple Bayes net from a file, compile it into a form suitable for fast inference, enter some
findings, and see how the beliefs of a particular node change with each finding. The example program,

Dolnference.java, can be found in the examples/ directory of the Netica-J installation.

The net we will use, called ChestClinic, is shown below. Although reasonable, it is a toy medical
diagnosis example from LauritzenSpiegelhalter88 that has often been used in the past for demonstration
purposes. To a certain degree, the links of the net correspond to causation. The two top nodes are

"predispositions" which influence the likelihood of the diseases in the row below them. At the bottom are

JAVA VERSION 4.18 NETICA API 23

symptoms for the disease. Each possible state of the node is shown in the box. Ignore the bars for now;
they were produced by the Netica Application program, and just show the probabilities of each state

before any findings have arrived.

Visit To Asia Smoking
visit 100| i § i smoker 50.0
no visit 99.0 |mm—— non smoker 50.0 jm=

Tuberculosis Lung Cancer Bronchitis
present 1.04| i i i present 550| i i i present 45.0
absent 99.0 j———" absent 94.5 absent 55.0

N,

Tuberculosis or Cancer

true 6481 i i
false 93.5 |——
XRay Result Dyspnea
abnormal 11.0m { { ! present 43.6
normal 89.0 |mi—— absent 56.4

Before the example program below will work, the file containing the net “ChestClinic.dne” must exist in
the “Data Files” subdirectory of the directory running the program. If you are running this example
straight from examples/ directory of the Netica API distribution, that will already be the case. Otherwise
you should obtain the file from the “examples/Data Files” directory of the Netica API distribution. Or
you can build it yourself; the next chapter shows how, and at the end of that chapter is a file listing of the
net (it is missing the Bronchitis and Dyspnea nodes, but they are not needed now anyway).

/*

* Dolnference.java

* Example use of Netica-J for doing probabilistic inference.

*/

import norsys.netica.*;

public class Dolnference {
public static void main (String[] args){

try {
Environ env = new Environ (null);

/I Read in the net created by the BuildNet.java example program.

Net net = new Net (new Streamer ("Data Files/ChestClinicBuilt.dne"));

24 NETICA API JAVA VERSION 4.18

Node visitAsia = net.getNode ("VisitAsia");
Node tuberculosis = net.getNode ("Tuberculosis");

Node xRay = net.getNode ("XRay");

net.compile();

double belief = tuberculosis.getBelief ("present”);

System.out.printin ("\nThe probability of tuberculosis is " + belief);

xRay.finding().enterState ("abnormal");
belief = tuberculosis.getBelief ("present");
System.out.printin ("\nGiven an abnormal X-ray,\n" +

"the probability of tuberculosis is " + belief);

visitAsia.finding().enterState ("visit");
belief = tuberculosis.getBelief ("present");
System.out.printin ("\nGiven an abnormal X-ray and a visit to Asia,\n" +
"the probability of tuberculosis is " + belief + "\n");
net.finalize();
}
catch (Exception e){

e.printStackTrace();

The program starts by using new Environ() as described in the previous chapter. Next, new Net()
is used to read the file and create the net in memory. If you wish to have detailed descriptions of any of

these functions, remember that you can look them up in the javadocs.

You can see that the entire program is wrapped within single try/catch block. Most Netica-J API methods

throw NeticaException exceptions, if anything erroneous is attempted or results.

Next, net.compile() builds the junction tree of cliques and attaches it to the data structure of the
Bayes net, but does not discard any of the information from the original Bayes net. We can now use this

net to diagnose a new patient who has just entered the clinic.

In the next line Node.getBelief () is called to determine the probability tuberculosis is present:

double belief = tuberculosis.getBelief ("present”);

JAVA VERSION 4.18 NETICA API 25

This causes a "belief updating” to be done, which finds new beliefs for all the nodes in the net. This step
can be time consuming if the net is very large or highly connected. If Node.getBelief() is then called
for some other node, it would return almost immediately, because the calculated beliefs have been saved

at each node.

The program then prints out the probability of tuberculosis, which we can see is 1.04% from the listing of
the program output below. This is the probability that the new patient has tuberculosis before we know
anything else about him. The number may seem high, but then perhaps this net was built for people

entering a certain clinic, and many of them wouldn't be there unless they have some kind of illness.

An X-ray is taken of the patient, and it comes out "abnormal"”. A Bayes net to be used for anything
practical would define the X-ray outcome in more detail, but this will do for the example. We enter this

finding into the net with:
XxRay. finding () .enterState ("abnormal") ;

Then we use Node.getBelief() to cause belief updating to occur again (to incorporate the latest
finding) and return the probability that the patient has tuberculosis given that his X-ray came out
abnormal. The probability has now jumped to 9.24%, so we ask him if he has recently made a trip to
Asia. When he answers to the affirmative, and we enter that finding, we then get a tuberculosis
probability of 33.8%.

Exercise for the Reader: After further testing you might discover that our patient has lung cancer, and

want to enter that as a finding. The lung cancer "explains away" the abnormal X-ray, and so our

probability that he has tuberculosis would fall to 5.00%. Try editing and running Dolnference.java.

The output produced will be:

>java [..] DoInference

The probability of tuberculosis is 0.0104

Given an abnormal X-ray,
the probability of tuberculosis is 0.0924109

Given an abnormal X-ray and a visit to Asia,
the probability of tuberculosis is 0.337716

Given abnormal X-ray, Asia visit, and lung cancer,
the probability of tuberculosis is 0.05

26 NETICA API JAVA VERSION 4.18

For examples involving more complex types of findings, and the retraction of findings, see the "Findings

and Cases" chapter.

JAVA VERSION 4.18 NETICA API 27

4 Building and Saving Nets

In the previous chapter we loaded a Bayes net into memory from a file and then did probabilistic

inference using it. Now we consider how to obtain the net file in the first place. Some possibilities are:

* Obtain a net file of interest from Norsys, another company or a colleague (by email, disk,
downloading from a website, etc.). The file is machine and operating system independent. For
examples of Bayes nets, see: http://www.norsys.com/netlibrary/index.htm

* Create the file using a text editor, according to the DNET file specification, or write a program that
creates the DNET text file.

* Use the Netica Application program to construct the net on the screen of your computer using

simple point-and-click drawing, and then save it to a file.

» Call functions in the Netica API to construct the net in memory. Once the net is in memory you

may use it for probabilistic inference, learning, etc., or you can save it to a file for later usage.

In this chapter we will discuss the last method. Below is a complete program which constructs the
ChestClinic net used in the previous chapter (except, to be more brief, it doesn't include the two nodes
Bronchitis and Dyspnea, which are not required for the inference examples of that chapter — but the code
in the examples directory does). This program, BuildNet.java, can be found in the examples/ directory of
your Netica-J installation.

/*

* BuildNet.java

* Example use of Netica-J to construct a Bayes net and save it to file.

*/

import norsys.netica.”;

import norsys.neticaEx.aliases.Node;

public class BuildNet {

public static void main (String[] args){

NETICA API JAVA VERSION 4.18

try {
Node.setConstructorClass ("norsys.neticaEx.aliases.Node");

Environ env = new Environ (null);

Net net = new Net();

net.setName ("ChestClinic");

Node visitAsia = new Node ("VisitAsia", "visit, no_visit”, net);

Node tuberculosis =new Node ("Tuberculosis", "present, absent", net);
Node smoking = new Node ("Smoking", "smoker, nonsmoker", net);
Node cancer =new Node ("Cancer", "present, absent", net);

Node tbOrCa = new Node ("TbOrCa", "true, false", net);

Node xRay =new Node ("XRay", "abnormal, normal", net);

visitAsia.setTitle ("Visit to Asia");
cancer.setTitle ("Lung Cancer");

tbOrCa.setTitle ("Tuberculosis or Cancer");

visitAsia.state("visit").setTitle ("Visited Asia within the last 3 years");

tuberculosis.addLink (visitAsia); /I puts link from visitAsia to tuberculosis
cancer.addLink (smoking);

tbOrCa.addLink (tuberculosis);

tbOrCa.addLink (cancer);

xRay.addLink (tbOrCa);

visitAsia.setCPTable (0.01, 0.99);
smoking.setCPTable (0.5, 0.5);

/I VisitAsia present absent
tuberculosis.setCPTable ("visit", 0.05, 0.95);
tuberculosis.setCPTable ("no_visit", 0.01, 0.99);

/I Smoking present absent
cancer.setCPTable ("smoker", 0.1, 0.9);
cancer.setCPTable ("nonsmoker", 0.01, 0.99);

/I TbOrCa abnormal normal
xRay.setCPTable ("true", 0.98, 0.02);

xRay.setCPTable ("false",0.05, 0.95);

JAVA VERSION 4.18 NETICA API 29

tbOrCa.setEquation ("TbOrCa (Tuberculosis, Cancer) = Tuberculosis || Cancer");

tbOrCa.equationToTable (1, false, false);

Streamer stream = new Streamer ("Data Files/ChestClinicBuilt.dne");

net.write (stream);

net.finalize(); /I free resources immediately and safely

}

catch (Exception e){

e.printStackTrace();

First, the above program constructs a new empty net with new Net() and then adds each of the nodes
with new Node(). Each node represents some scalar variable of interest, either discrete or continuous.
The first string passed to the Node constructor is the name of the node, and the second is a comma-
delimited list of state names for that node. The states must be mutually exclusive (value can't be two
different states at the same time), and exhaustive (it is always in one of the states). Sometimes it is easiest

to satisfy the exhaustive condition by having a state called "other".

The names of the net, nodes and states are passed as Strings. These strings must meet the requirements of

an IDname, which are:

» The name must be between 1 and General.NAME_MAX (= 30) characters long, inclusive.
» The name must consist entirely of alphabetic characters (a-z and A-Z), digits and underscores (').
* The name must start with an alphabetic character.

* Often they must be unique within the object they apply to. Comparisons are case-sensitive.

In general, Netica restricts names for all objects in this way. If you find that overly restrictive, then you
can also give the object a "title", which is an unrestricted Unicode string. Some objects can have a
"comment" as well, which is also an unrestricted Unicode string, and it would not be out of the ordinary if

this were thousands of characters long.

The states do not need to be named, so instead of the list of state names, a "2" could be passed to Node ()
indicating the number of states the node can take on (0 would be passed for a continuous node). Later,
the program could set the state names of the nodes using Node.setStateNames(). Or they could be
left unnamed, but in general it is recommended to name them in order to keep track of the meanings of

the states, and to be able to refer to the states by names, as was done in the last chapter. Then a couple of

30 NETICA API JAVA VERSION 4.18

nodes are given titles, which also aren't really required, but are a bit more descriptive than their names

(the idea is to keep names short for convenience).

Next, the nodes are linked together with Node.addLink(). A call of the form nodeC.addL1ink
(nodeP) makes nodeP a "parent" of nodeC, which means we wish to express the probabilities of nodeC
as a function of (i.e. "conditioned on") values of nodeP. Usually the link indicates that nodeP causes

nodeC, that nodeC is an imperfect observation of nodeP, or that the two nodes are statistically correlated.

Finally, the conditional probability tables (CPTs) are added. For each node, these are the probabilities of
each of its states, conditioned on the states of its parent nodes. They are built up by multiple calls to
NodeEx.setCPTable (which is defined in NodeEx.java as a convenient way to call
Node.setCPTable()). The first argument in each call is the names of the conditioning states of its
parents as a String. Finally comes a list of numbers, being the probabilities for each of the states of the

node.

For example: cancer.setCPTable ("smoker", 0.1, 0.9) means that the probability that cancer
is in its first state given that its parent is in state "smoker" is 0.1, and the probability that it's in its second

state is 0.9. In probabilistic notation: P(cancer=present | smoking=smoker) = 0.1

As another example, tbOrCa.setCPTable ("present", "absent", 1.0, 0.0) means:

P(TbOrCa=true | Tuberculosis = present, Cancer= absent) = 1.0

If "*" is used as the name of a conditioning state, then it will apply to all values of that parent node.
Likewise State.EVERY_STATE can be used with setCPTable().

There is one thing to be cautious of when using setCPTabTle. If speed is critical, and you must set large
probability tables, use Node.setCPTable() instead of NodeEx.setCPTable(). For example,
tbOrCa.setCPTable (TbOrCa, "present", "absent", 1.0, 0.0) could be accomplished
by:

parentStates[0] = 0; parentStates[1] = 1; // present absent

probs[0] = 1.0; probs[1] = 0.0;

tbOrCa.setCPTable (parent_states, probs);

There is an even faster way to set the whole CPT table with one function call. You call
Node.setCPTable(double[] cptTable), the whole table for the probability array. The table you
pass in should be in row-major form with the last parent varying fastest (the same order the table is
displayed in the CPT editor of Netica Application).

If you wish to give a node a deterministic relationship, rather than probabilistic, you may use
Node.setStateFuncTable().

JAVA VERSION 4.18 NETICA API 31

Now the net is fully constructed in memory, and we could use it for inference, do net transforms, etc., but
in this example we just save it to a file for later use, by calling Net.write(). The resulting file is a pure
ASCII text file which can be read back by Netica API or by Netica Application, whether they are running
on the same computer or another type of computer. The file adheres to the DNET format, which is

described in the document "DNET File Format". It will look similar to the below:

// ~=>[DNET-1]->~
bnet Built ChestClinic {
node VisitAsia {

kind = NATURE;
discrete = TRUE;

states = (visit, no visit);
parents = ();
probs =
// visit no visit
(0.01, 0.99);

i

node Tuberculosis {
kind = NATURE;
discrete = TRUE;

states = (present, absent);
parents = (VisitAsia);
probs =
// present absent // VisitAsia
(0.05, 0.95, // visit
0.01, 0.99); // no_visit

b

node Smoking {
kind = NATURE;
discrete = TRUE;

states = (smoker, nonsmoker);
parents = ();
probs =

// smoker nonsmoker

(0.5, 0.5);
b

32 NETICA API

JAVA VERSION 4.18

node Cancer {
kind = NATURE;
discrete = TRUE;

states = (present, absent);
parents = (Smoking);
probs =
// present absent // Smoking
(0.1, 0.9, // smoker
0.01, 0.99); // nonsmoker
title = "Lung Cancer";

b

node TbOrCa {
kind = NATURE;
discrete = TRUE;

states = (true, false);
parents = (Tuberculosis, Cancer);
probs =
// true false // Tuberculosis Cancer
(1, 0, // present present
1, 0, // present absent
1, 0, // absent present
0, 1); // absent absent
title = "Tuberculosis or Cancer";
bi
node XRay {
kind = NATURE;
discrete = TRUE;
states = (abnormal, normal);
parents = (TbOrCa);
probs =
// abnormal normal // TbOrCa
(0.98, 0.02, // true
0.05, 0.95); // false

i

The DNET file format is a text format, but Netica can also work with a binary format called NETA. The

binary files are much smaller, they usually read faster, and Netica can encrypt them. To save the above

net in NETA format, you would change the call to net.write() to be:

net.write (new Streamer ("Built_ChestClinic.neta"));

That is, the call is exactly the same as for a DNET file, but the file name has an extension of .neta instead

of anything else. The Netica API call for reading the NETA file is the same as for a DNET file; Netica will

recognize each and handle it appropriately. If you wish, you can encrypt the net so that only software that

knows the password will be able to read it.:

JAVA VERSION 4.18 NETICA API 33

Streamer stream = new Streamer ("Built_ChestClinic.neta");
stream.setPassword ("MyPassword123");

net.write (stream); /I writes an encrypted file

Encryption is useful when you need to distribute the net with your application for Netica API to use, but
the net contains proprietary information. Encrypted nets can also be read (or created) by Netica
Application, provided that the user enters the correct password. For a full code example, including

reading encrypted files, see the javadocs for Streamer.setPassword().

There are a number of other functions that may be used when constructing a net. For a list of them, see
the "Low-Level Net Modification" section of the " Functions by Category" chapter, and for detailed

descriptions of each one, see the javadocs for the Net class.

For another example of constructing a net, which demonstrates how to build a decision net, create

decision and utility nodes, and work with 3-state and continuous nodes, see the "Decision Nets" chapter.

34 NETICA API JAVA VERSION 4.18

S5 Findings and Cases

In the "Probabilistic Inference" chapter we saw how to enter positive findings into a Bayes net to do
probabilistic inference (findings are also known as “evidence™). A positive finding is the observation or
knowledge that some discrete node definitely has a particular value. However, we may discover that
some node definitely does not have some particular value, and not have any more information to help us

determine what value it does have. This is called a negative finding.

For example, say the node 'Temperature' can take on the values cold, medium, and hot. We may obtain
information that the temperature is not hot, although it doesn't distinguish between medium and cold at
all. This is a single negative finding. If later we receive another negative finding that the temperature is
not medium, then we can conclude that it is cold. So, several negative findings can be equivalent to one

positive finding.

A third type of finding is a soft finding (also known as “virtual evidence”) or likelihood finding . In this
case we receive uncertain information about the value of some discrete node. It could be from an
imperfect sensor, or from a friend who is not always right. Say we have a thermosensor to measure
'"Temperature', which is designed so that when the temperature is hot it is supposed to turn on. In actual
practice we find that when the temperature is cold the sensor never goes on, when the temperature is
medium it goes on 10% of time, and when it is hot it always goes on. If at a certain time we observe the
sensor on, and want to enter this finding into the Temperature node, then we do so as a likelihood finding.
A likelihood finding consists of one probability for each state of the node, which is the probability that the
observation would be made if the node were in that state. For our temperature example, the likelihood
finding would be (0, 0.1, 1). A common mistake is to think that the likelihood is the probability of the
state given the observation made (in which case the numbers would have to add to one), but it is the other

way around.

A positive finding is equivalent to a likelihood finding consisting of all Os except a single 1. A negative
finding is equivalent to a likelihood finding consisting of all 1s (or some other nonzero number) except a
single 0. Two independent findings for a node can be combined by component-wise multiplication of

their likelihood vectors. If they are not independent, and it is too inaccurate to approximate them as

JAVA VERSION 4.18 NETICA API 35

independent, then they should be combined by adding 2 child nodes to the observed node in the original
net, one for each observation, connecting them together to show the dependency, and then entering

positive findings for the child nodes.

Netica has functions for the direct entry of positive findings, negative findings, likelihood findings, and
also findings that a continuous node has a certain value. If several findings are entered for the same node,
then it combines them as if they were independent observations, and generates an error if they are
inconsistent. Checking for consistency between the findings of one node and those of another node
(given the inter-node relations encoded in the net), is only done if belief updating is done after each
finding is entered, which will be the case if the net is auto-updating (see Net.setAutoUpdate()) or if
Node.getBeliefs() is called between entering findings.

As an example, consider the following section of code to enter findings for node, which has 4 states:

(a) int fst;

(b) Node node;

(c) float[] clike, belief;

(d) float[] like = new float[4];

@) like[0] = 0.6F; like[1] = 0.6F; like[2] = 1.0F; like[3] = 1.0F;
(2) node.finding().enterLikelihood (like);

(3) node.finding().enterStateNot (1);

4) like[0] = 0.5F; like[1] = 0.6F; like[2] = 0.0F; like[3] = 0.5F;
(5) node.finding().enterLikelihood (like);

(6) clike = node.finding().getLikelihood();

(7) /I node.finding().enterState (2);

(8) belief = node.getBeliefs()

(9) fst = node.finding().getState();

(10) node.finding().clear();

(11) node.finding().enterState (2);

(12) fst = node.finding().getState();

(13) clike = node.finding().getLikelihood();

Step 1 sets up a likelihood vector, and step 2 enters it as a finding for node. The finding means that an
observation was made that would certainly be observed if node were in state 2 or 3, and that would
occur with probability 0.6 if node were in state 0 or 1. Step 3 enters a negative finding which means

"the value of node is not state 1". Steps 4 and 5 enter another likelihood finding, and then step 6

retrieves the likelihood vector for the accumulated findings so far. It will have the values:

clike[0] =0.3 clike[1] =0.0 clike[2] =0.0 clike[3] = 0.5

36 NETICA API JAVA VERSION 4.18

Notice that clike[1] is 0 due to the negative finding of step 3, and clike[2] is 0 due to the O in the
likelihood finding of steps 4&S5.

Step 7 is commented out, but if it weren't it would generate an error because saying "the value of node

is state 2" is inconsistent with the likelihood finding of steps 4&S5.

Step 8 causes a belief updating to be done, and it could return a belief vector with the following values:
belief[0] =0.9 belief[11=0.0 belief[2] =0.0 belief[3] = 0.1

Even though the accumulated likelihood (c11ike) said state 3 was the most likely value for node, when

the findings for other nodes, and their relations with node, were taken into account, state 0 became more

probable than state 1. In general, it is not possible to determine anything about what the belief of a node
is going to be based just on its accumulated likelihood findings, except that states with a zero likelihood

will have a zero belief.

Step 9 demonstrates getState()being used to query what finding has been entered for node. It is

designed to retrieve positive findings, and since node has likelihood findings, it will just return the

constant Value.LIKELIHOOD_VALUE.

Step 10 retracts all the findings that have been entered for node, thereby undoing all of the above, and

step 11 enters the positive finding that the value of node is state 2, which won't generate an error this

time like it would have in step 7. When getState() is called in step 12, it will now return 2, and the
values of c1ike after step 13 will be:

clike[0] =0.0 clike[1]=0.0 clike[2]=1.0 clike[3] = 0.0

5.1 Cases and Case Files

The set of all findings entered into the nodes of a single Bayes net is referred to as a case. A case may be
saved to a file for later retrieval. Case files may consist of a single case, or of many cases. Case files act
as databases; they may be used to swap cases in and out of a net as additional findings are obtained or

beliefs required, to transfer a case from one net to another, or as data to learn a new net.

Some ways you can make a case file are:

* Use a text editor to manually construct it, according to the specification below.
» Write a program whose output is a case file.

* Export it (as a CSV or tab-delimited text file) from a spreadsheet or database program. Or you can
copy from the spreadsheet or database program, paste into a text editor, and save as a text file.

JAVA VERSION 4.18 NETICA API 37

* Extract it from a database using Caseset.addCases (DatabaseManager, ..) followed by
Caseset.writeCases(..)

* Use Netica Application to enter findings by pointing and clicking, and then choose "Save Case"
from the menu.

» Call Netica API functions to enter the case as findings into a Bayes net, write the case to a file, and
repeat for each case to be put in the file.

Case files (single-case or multi-case) are pure ASCII text files. They may contain
// ~->[CASE-1]->~ somewhere in the first 3 lines, to indicate to Netica what the file contains, but
that isn’t required. Then comes a line consisting of headings for the columns. Each heading corresponds
to one variable of the case, and is the name of the node used to represent the variable (sometimes the
variables are called attributes and the entries in the column values, i.e. attribute-value). The headings are

separated by spaces and/or tabs (it doesn't matter how many).

The case data is next, with one case per line (a single-case file would only have one such line). The
values of the variables are in the same order as the heading line, and are separated by spaces or tabs (the
columns don't have to "line up" as they do in the example files below). The value of a discrete variable is
given by its state name, or if it doesn't have a state name, then by the number symbol, followed by its
state number (e.g. #3). The state names are preferred, since the order of the states may be changed some

time, and that would render the file invalid.

The value of a continuous variable is given by a number, expressed as an integer, decimal, or in scientific
notation (e.g. -3.21e-7). If the variable has been discretized, then the value may be given by a state name
or state number, but the continuous number is preferred if it is available. That way, the case file can be
used for different discretizations of that variable in the future. Try to use the correct number of

significant figures, since future versions of Netica may use this information.

A single-case file is the same as one with multiple cases, except it just has 1 case. There may be as much
whitespace as desired between the lines, including Java/C/C++ style comments. If the values of some of
the variables are unknown for some of the cases, then a question mark or asterisk (? or *) is put in the

file instead of the value (this is known as missing data).

If you read in a case, and the case file has a node value that doesn't correspond to any state of that node in
the net (e.g. the states of net node 'color' are 'red' and 'green', and the value for color in the case file is
'blue'), then an error will be generated. An exception to this is if one of the states of the net node is called

"other". Then the case will be read without error, and the finding for the node will be 'other'.

There are two special columns that a file may have which don't correspond to nodes. One provides an
identification number for each case, which must be an integer between 0 and 2 billion. The heading for

this column is "IDnum". Identification numbers do not have to be in order through the file. The other

38

NETICA API

JAVA VERSION 4.18

special column has the heading "NumCases", and indicates the frequency or multiplicity of t